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To respond to pandemics such as COVID-19, policy makers have relied on interventions that target specific

population groups or activities. Because targeting is operationally challenging and contentious, rigorously

quantifying its benefits and designing practically implementable policies that achieve some of these benefits

is critical for effective and equitable pandemic control. We propose a flexible framework that leverages

publicly available data and a novel optimization algorithm based on model predictive control and trust region

methods to compute optimized interventions that can target two dimensions of heterogeneity: age groups

and the specific activities that individuals normally engage in. We showcase a complete implementation

focused on the Île-de-France region of France and use this case study to quantify the benefits of dual

targeting and to propose practically implementable policies. We find that dual targeting can lead to Pareto

improvements, reducing the number of deaths and the economic losses. Additionally, dual targeting allows

maintaining higher activity levels for most age groups and, importantly, for those groups that are most

confined, thus leading to confinements that are arguably more equitable. We then fit decision trees to explain

the decisions and gains of dual-targeted policies and find that they prioritize confinements intuitively, by

allowing increased activity levels for group-activity pairs with high marginal economic value prorated by

social contacts, which generates important complementarities. Because dual targeting can face significant

implementation challenges, we introduce two practical proposals inspired by real-world interventions —

based on curfews and recommendations — that achieve a significant portion of the benefits without explicitly

discriminating based on age.
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1. Introduction

The COVID-19 pandemic has forced policy makers worldwide to rely on a range of large-scale pop-

ulation confinement measures in an effort to contain disease spread. In determining these measures,

a key recognition has been that substantial differences exist in the health and economic impact

produced by different individuals engaged in distinct activities. Targeting confinements to account

for such heterogeneity could be an important lever to mitigate a pandemic’s impact, but could
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also lead to potentially contentious and discriminatory measures. This work is aimed at develop-

ing a rigorous framework to quantify the benefits and downsides of such targeted interventions in

pandemic management, and applying it to the COVID-19 pandemic as a real-world case study.

Targeting has been implemented in several different ways during the COVID-19 pandemic. We

include a detailed survey of COVID-19 targeted restrictions in Appendix Table EC.14. One real-

world contentious example has been to differentiate confinements based on age groups, e.g., shel-

tering older individuals who might face higher health risks if infected, or restricting younger groups

who might create higher infection risks. Such measures have been implemented in several settings

– e.g., with stricter confinements applied to older groups in Finland (Tiirinki et al. 2020), Ireland

(Harrison 2020), Israel (Magid 2020) and Moscow (Foy 2020), or curfews applied to children and

youth in Bosnia and Herzegovina (Reuters Staff 2020) and Turkey (Kanbur and Ankgül 2020) –

but some of the measures were deemed ageist and unconstitutional and were eventually overturned

(Magid 2020, Reuters Staff 2020).

A different example of targeting extensively employed in practice has been to tailor confinements

to specific activities conducted during a typical day. This has been driven by the recognition that

different activities (or more specifically, population interactions in locations of certain activities)

such as work, schooling, transport or leisure can result in significantly different patterns of social

contacts and new infections. This heterogeneity has been recognized in numerous implementations

that differentially confine activities through restrictions of varying degrees on schools, workplaces,

recreation venues, retail spaces, etc. Additionally, some practical implementations even differen-

tiated based on both age groups and activities, e.g., by setting aside dedicated hours when only

the senior population was allowed to shop at supermarkets (Aguilera 2020), or by restricting only

higher age groups from in-person work activities (Magid 2020).

As these examples suggest, targeted interventions have merits but also pose potentially significant

downsides. On the one hand, targeting can generate improvements in both health and economic

outcomes, giving policy makers an improved lever when navigating difficult trade-offs. Additionally,
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explicitly considering multiple dimensions of targeting simultaneously – such as activities and age

groups – could overturn some of the prevailing insight that specific age groups should uniformly

face stricter confinements. However, such granular policies are more difficult to implement, and

could lead to discriminatory and potentially unfair measures.

Given that some amount of targeting is already in place in existing real-world policy imple-

mentations, it is critical to transparently model and quantify its benefits and downsides, as well

as examining practical policies that can realize some of these benefits. This gives rise to several

natural research questions: How large are the health and economic benefits of interventions that

can engage in progressively finer targeting? Does finer targeting lead to significant synergies, and

is there an interpretable mechanism through which this happens? Because finer targeting may be

impractical, are there ways to capture some of its benefits with easier-to-implement policies?

1.1. Contributions

At a high level, the main contributions of this work are in providing a rigorous framework to

quantify the potential benefits from targeted confinements and proposing practical implementations

that can achieve some of these benefits.

The framework. To develop robust and practical insights on the benefits of targeting, we

anchor our analysis on a modeling framework that leverages optimization and publicly available,

real data. We embed an optimization framework within a multi-group SEIR epidemiological model

that differentiates policies based on both population groups and activities, and balances the lost

economic value with the cost of deaths. Since the resulting optimization problem is highly non-

convex, we design a novel algorithm — referred to as ROLD (Re-Optimization with Linearized

Dynamics) — that can tractably produce high-quality approximate solutions through a lineariza-

tion and optimization procedure inspired by model predictive control (Bemporad 2006, Camacho

and Alba 2013) and trust region methods (Yuan 2015). We then propose a real-life implementa-

tion leveraging publicly available data on (i) real-time hospitalization, (ii) community mobility,

(iii) social contacts, and (iv) socio-economic measures collected during the COVID-19 pandemic
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in Île-de-France, a region of France encompassing Paris with a population of approximately 12

million. The framework we develop is flexible, and could be extended to capture other targeted

interventions such as testing or vaccinations, as well as additional considerations such as integrality

requirements or fairness constraints.

Insights. We leverage this framework to address the core research questions posed earlier.

1. An idealized benchmark for the benefits of targeting. We first quantify the potential

benefits that could be achieved in an idealized setting where dual targeting of both activ-

ities and age-groups is possible and perfectly enforceable. We find that dual targeting can

lead to significant Pareto improvements. Specifically, the optimal ROLD policy that targets

both age groups and activities Pareto-dominates the optimal ROLD policies that only target

age groups, activities, or neither, i.e., it leads to lower economic costs without increasing the

number of pandemic deaths. The gains from targeting are also super-additive: targeting on

both dimensions gains more than the sum of gains from unilateral targeting. In addition, the

optimized dual-targeted policy also Pareto-dominates a number of benchmarks resembling

policies implemented in practice. Finally, although not an explicit objective of the optimiza-

tion, the dual-targeted ROLD policy also generally reduces the time in confinement for most

population groups (and particularly for those groups that are most heavily confined) relative

to less fine-grained policies.

2. Interpretability. We shed light on the mechanism and the cases when targeting leads to

benefits. In term of mechanism, we find that optimized dual-targeted policies impose less con-

finement on group-activity pairs that generate a relatively high economic value prorated by

activity-specific social contacts. This leads to complementary confinement schedules for dif-

ferent groups that reduce both the number of deaths and economic losses, with the important

added benefit of not completely confining any group. We confirm these insights by running

ROLD on a wide range of problem instances and generating a large dataset, which we use

to train decision trees to predict the ROLD decisions based on simple, transparent features.



Author: Targeting for Pandemic Response
6 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

The key feature that explains the targeting is the “econ-to-contacts-ratio,” i.e., the ratio of

marginal economic value to total contacts generated for a given (group, activity) pair.

To understand when targeting leads to benefits, we train separate decision trees to predict

the gains from dual targeting over less or no targeting. We find that R0, the cost of death,

the heterogeneity in the econ-to-contacts-ratio values, and the severity of the disease are the

most important features, and that some of these can have a non-monotonic impact on the

magnitude of the gains. In particular, our analysis leads to practical insights about the value

of refined targeting depending on the pandemic’s reproduction number and the policy maker’s

weighting of health over economic outcomes.

3. Implementability. Finally, we propose two new policies that do not explicitly target age

and are thus simpler to implement and less contentious, but that nonetheless retain some

of the superior health and economic outcomes of idealized dual targeting. Both policies are

inspired by real-world pandemic response measures. We first consider curfew policies that

restrict activities at targeted times of day, uniformly for all age groups. Because different age

groups perform distinct activities throughout the day, curfews have the potential to implicitly

differentiate based on age. In the second proposal, we consider recommending, as opposed to

enforcing, targeted activity levels separately for each age group, while accounting for imperfect

population compliance. The results show that both proposals can significantly improve over

activity-based targeting. Specifically, considering the gap between a dual-targeted and an

activity-based targeted policy, we find that a curfew policy can close 24.3% (median value)

of that gap and a recommendation-based policy can lead to significant improvements even at

relatively modest compliance levels, closing 10.4% (median value) of the gap at 40% compliance

and 19.2% at 60% compliance.

2. Literature Review

The literature on pandemic response, particularly in the COVID-19 context, is already vast, so we

focus our literature review on three key dimensions that our work most closely relates to.
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Targeting. Paralleling our aforementioned real-life examples, several papers have studied targeted

interventions. Kucharski et al. (2020), Prem et al. (2020), Di Domenico et al. (2020), Cipriano

et al. (2021) recognize the importance of heterogeneity in the social contacts generated through

activities and examine several interventions limiting them. Though some of the models here are

age differentiated, targeting only happens through activities. Population group targeting, either

through confinements, testing or vaccinations, has been investigated in Bastani et al. (2021), Ace-

moglu et al. (2020), Matrajt et al. (2021), Goldstein et al. (2021), Bertsimas et al. (2020), Favero

et al. (2020), Birge et al. (2020), Chang et al. (2020), Evgeniou et al. (2020), Giordano et al. (2021).

By enforcing stricter confinements for higher risk groups (e.g., older populations when considering

mortality risk or younger populations when considering the risk of new infections), such targeted

policies have been shown to generate potentially significant improvements in health outcomes,

and even in economic value if optimally tailored (Acemoglu et al. 2020). A potential benefit of

our approach is that, by exploiting complementarities between group and activity targeting, these

higher risk groups may experience less confinement for the same level of aggregate deaths and

economic losses.

Optimization of interventions in epidemiological models. Our work relates to research that

combines epidemiological modeling and optimization techniques to design improved interventions.

In general, an epidemic is modeled by a compartmental model, where interventions change the

parameters that describe the epidemic with the goal to minimize the health (and economic) bur-

den. Although an analytical characterization of the optimal solution is possible in special cases

(Brandeau et al. 2003), the problem is generally intractable and, similar to our framework, research

has focused on proposing heuristic algorithms and approximations for solving the general prob-

lem (Zaric and Brandeau 2001, 2002). The paper that is most related to ours is Bertsimas et al.

(2020), which also proposes a multi-group SEIR formulation, in conjunction with an iterative coor-

dinate descent algorithm to optimize vaccine allocations for COVID-19 in a differentiated fashion.

Although taking different approaches to doing so, both the algorithm proposed there and our
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ROLD heuristic crucially depend on solving linearized versions of the true SEIR dynamics which

are tractable via commercial solvers. However, the model of Bertsimas et al. (2020) focuses on

vaccine allocation decisions, whereas ours captures the dynamics of differential confinements and

also allows activity-based targeting. Bose et al. (2021), Pataro et al. (2021), Morris et al. (2021)

also borrow from the optimal control literature, but the models there are simpler than our own and

do not capture targeting. Birge et al. (2020) use formal optimization for location-based targeting,

but in a one-shot model that does not differentiate age groups or activities and does not account

for time in the calculation of health or economic impact. Last, several studies from the operations

research community have proposed optimization models to support the allocation of ventilators

during epidemics (Huang et al. 2017, Adelman 2020, Mehrotra et al. 2020, Bertsimas et al. 2021).

Our paper is also related to a large stream of work that derives prescriptive insights for managing

the COVID-19 pandemic. Kaplan (2020) summarizes modeling studies that supported local deci-

sions on event crowd-size restrictions, hospital surge planning, and timing of activity restrictions

during COVID-19 response. Several papers simulate a small number of candidate policies for social

distancing, e.g., full lockdown versus school-only lockdown (Kucharski et al. 2020, Prem et al. 2020,

Di Domenico et al. 2020, El Housni et al. 2020, Favero et al. 2020, Bertsimas et al. 2021), compare

a number of current and counterfactual lockdown policies that differ in their schedule of relaxations

(Boloori and Saghafian 2023), or restrict the candidates to a simple parametric class for which

exhaustive search is computationally feasible (e.g., trigger policies based on hospital admissions as

in Duque et al. 2020 or confirmed cases as Ahn et al. 2021). These approaches do not use formal

optimization and, when considering a more complex policy space like in our targeting model, could

lead to significantly sub-optimal results and misleading conclusions. Navabi-Shirazi et al. (2022) use

multicriteria optimization to select the mode (remote, in-person, hybrid) of university courses and

assign classrooms, under severely reduced capacities due to COVID-19 social distancing measures.

The study of Fotouhi et al. (2021) helps policy makers design curbside restrictions in meal delivery

operations that reduce curbside crowding, thus increasing public safety during a pandemic, yet

enable delivery companies to retain their profitability.
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COVID-19 forecasting and SEIR model calibration. Several studies have focused on fore-

casting the health burden of COVID-19 in the presence (or relaxation) of policy interventions.

Agent-based simulation has been used to study the effect of government interventions, including

vaccination of various efficacy and coverage levels along with non-pharmaceutical interventions

(such as reduced mobility, school closings, and use of face masks; Patel et al. 2021, Alagoz et al.

2021); vaccination at different times (Rosenstrom et al. 2022); and social distancing measures

implemented at different times and adhered to in different degrees (Alagoz et al. 2020). Linas et al.

(2022) employ the COVID-19 policy simulator of Chhatwal et al. (2020) to project COVID-19

mortality as U.S. states relaxed non-pharmaceutical interventions. Li et al. (2022) propose an epi-

demiological prediction model to quantify the impact of government interventions (mass gathering

restrictions, school closings, stay at home) and their timing on the spread of COVID-19. Mandal

et al. (2021) show how seroprevalence data could guide a test-and-isolate strategy, for fully lifting

COVID-19 restrictions in Indian megacities.

Our work is also related to several other papers that have estimated SEIR parameters, partic-

ularly in the COVID-19 context. A number of papers estimate SEIR epidemiological parameters

stratified by age groups – we use the estimates from the Île-de-France study in Salje et al. (2020).

Another stream of papers, focusing on forecasting COVID-19 spread, estimate when and how the

underlying SEIR parameters evolve in response to government interventions and changes in indi-

vidual behavior, such as Perakis et al. (2021). Lastly, we relate to the literature that has used

Google and other mobility data to inform COVID-19 response strategies or to estimate the realized

reductions in social contacts during COVID-19 (Dutta et al. 2021, Ilin et al. 2021, Wellenius et al.

2020, Cot et al. 2021, Xiong et al. 2020), as well as the literature on social contacts estimation

(Béraud et al. 2015, Prem et al. 2017).

3. Model and Optimization Problem

We develop a controlled, multi-group SEIR model that includes time-dependent confinements

that can be targeted based on age groups and types of activities that individuals engage in. The
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framework is flexible, captures resource constraints such as hospital or ICU capacity, and can

be extended to capture other targeted interventions such as testing or vaccinations, as well as

additional restrictions that make targeting more fair or practical such as integrality requirements,

fairness constraints, etc. We discuss several of the potential extensions in Section 9.

3.1. Some Notation

We denote scalars by lower-case letters, as in v, and vectors by bold letters, as in v. We use

square brackets to denote the concatenation into vectors, v := [v0, v1]. For a time series of vectors

v1, . . . ,vn, we use vi:j := [vi, . . . ,vj] to denote the concatenation of vectors vi through vj. Lastly,

we use v> to refer to the transpose of v.

3.2. Epidemiological Model and Controls

We rely on a modified version of the discretized SEIR (Susceptible-Exposed-Infectious-Recovered)

epidemiological model (Anderson and May 1992, Prem et al. 2020, Salje et al. 2020) with multiple

population groups that interact with each other. In our case study we use nine groups g ∈ G

determined by age and split in 10-year buckets, with the youngest group capturing individuals

with age 0-9 and the oldest capturing individuals with age 80 or above. Time is discrete, indexed

by t= 0,1, . . . , T and measured in days. We assume that no infections are possible beyond time T .

Compartmental Model and States. Figure 1 represents the compartmental model and the

SEIR transitions for a specific group g. For a population group g in time period t, the compartmen-

tal model includes states Sg(t) (susceptible to be infected), Eg(t) (exposed but not yet infectious),

Ig(t) (infectious). Ig(t) is further subdivided into Ij,g(t) for j ∈ {a, ps,ms, ss} to model different

degrees of severity of symptoms: asymptomatic, paucisymptomatic, with mild symptoms, or with

severe symptoms; thus, Ig(t) =
∑

j∈{a,ps,ms,ss} Ij,g(t). The model also has states Rg(t) (recovered

but not confirmed as having had the virus), Rq
g(t) (recovered and confirmed as having had the

virus), and Dg(t) (deceased). Individuals with severe symptoms will need hospitalization, either

in general hospital wards (Hg(t)) or in intensive care units (ICUg(t)). All the states represent the

number of individuals in a compartment of the model in the beginning of the time period.
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Figure 1 Compartmental SEIR model for a specific group g with transition rates.
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Susceptible individuals get infected and transition to the exposed state at a rate determined

by the number of social contacts and the transmission rate β(t). Exposed individuals transition

to the infectious state at a rate σ and infectious individuals transition out of the infectious state

at a rate µ. We assume that an infectious individual in group g exhibits symptoms of degree j

with probability pj,g. An infectious individual needs to be hospitalized in general hospital wards

or ICU with probability pHg and pICUg , respectively, where pss,g = pHg + pICUg . On average, patients

treated in general hospital wards (ICU) spend λ−1
H (λ−1

ICU) days in the hospital (ICU). An infectious

individual with severe symptoms in group g deceases (recovers) with probability pDg (pRg = 1−pDg ).

We keep track of all living individuals in group g who are not confirmed to have had the disease

Ng(t) := Sg(t) +Eg(t) + Ig(t) +Rg(t), and let Xt =
[
Sg(t), Ig(t), ...,Dg(t)

]
g∈G denote the full state

of the system (across groups) at time 0≤ t≤ T . We denote the number of compartments by |X |,

so the dimension of Xt is |G||X |× 1.

Controls. Individuals interact in activities A= {work, transport, leisure, school,home,other}. These

interactions generate social contacts that drive the rate of new infections.

We control the SEIR dynamics by adjusting the confinement intensity in each group-activity pair

over time: we let `ag(t)∈ [0,1] denote the activity level allowed for group g and activity a at time t,

expressed as a fraction of the activity level under a normal course of life (i.e., no confinement). In

our study we take `home
g (t) = 1, meaning that the number of social contacts at home is unchanged
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irrespective of confinement policy.1. We denote the vector of all activity levels for group g at t by

`g(t) = [`ag(t)]a∈A, and we also refer to `g(t) as confinement decisions when no confusion can arise.

We propose a parametric model to map activity levels to social contacts. We use cg,h(`g,`h) to

denote the mean number of total daily contacts between an individual in group g and individuals in

group h across all activities when their activity levels are `g,`h, respectively. Varying the activity

levels changes the social contacts according to

cg,h(`g,`h) =
∑
a∈A

Ca
g,h · (`ag · `ah)α, (1)

where Ca
g,h denote the mean number of daily contacts in activity a under normal course (i.e.,

without confinement) and α∈R is a social mixing parameter that captures the elasticity of social

contacts to activity levels. This parametrization is similar to a Cobb-Douglas production function

(Mas-Colell et al. 1995), using the activity levels as inputs and the number of social contacts as

output. We retrieve values for Ca
g,h from the data tool of Wille et al. (2020), which is based on

the French social contact survey data in Béraud et al. (2015), and we estimate α from health

outcome data (French Government 2020) and Google mobility data (Google 2020), as described in

Section EC.4.2.

Let ut =
[
`g(t)

]
g∈G denote the vector of all decisions at time t ∈ {0,1, . . . , T − 1}, i.e., the con-

finement decisions for all the groups. We denote the number of different decisions for a given group

at a given time by |U|. Then the dimension of ut is |G||U|× 1.

3.3. Resources and Constraints

We use KH(t) (KICU(t)) to denote the capacity of beds in general hospital wards (ICU) on day t.

When the patient inflow into the hospital or the ICU exceeds the remaining number of available

beds, then the policy maker needs to decide how many patients to turn away from each group.

Although our framework allows optimizing over such decisions, we choose to not consider this

dimension of targeting because it can be extremely contentious in practice. Instead, we implement

a proportional rule that allocates any remaining hospital and ICU capacity among patients from
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all age groups proportionally to the number of cases requiring admission from each group. More

formally, with BH
g (t) denoting the number of patients from age group g who are denied admission

to general hospital wards in period t, the proportional rule is:

BH
g (t) =

H-flowg(t)∑
hH-flowh(t)︸ ︷︷ ︸

proportion of inflow into H from g

·

(∑
h

H-flowh(t)︸ ︷︷ ︸
total inflow into H

−
(
KH(t)−

∑
h

(
1−λHh

)
Hh(t)

)
︸ ︷︷ ︸

available beds in H

)+

, (2)

where H-flowg(t) := µ · pHg · Ig(t), and a similar rule holds for patients requiring admission to the

ICU. We assume that all patients that are denied admission die immediately.

We can now write a complete set of discrete dynamical equations for the controlled SEIR model

((EC.1)-(EC.9) in Appendix EC.1) and summarize these using the function

Ft(Xt,ut) :=
∆Xt

∆t
, (3)

where ∆Xt :=Xt+1−Xt. Additionally, we also include the following constraints:

(“Hospital capacity”)
∑
g

Hg(t)≤KH(t), ∀ t (4)

(“ICU capacity”)
∑
g

ICUg(t)≤KICU(t), ∀ t (5)

(“Fractional, non-negative activity levels”) 0≤ `ag(t)≤ 1, ∀g, a, t (6)

We denote by C(Xt) the feasible set described by (4)-(6)for the vector of decisions ut at time t.

3.4. Objective

Our objective captures two criteria. The first quantifies the total deaths directly attributable to

the pandemic, which we denote by Total Deaths(u0:T−1) :=
∑

g∈GDg(T ) to reflect the dependency

on the specific policy u0:T−1 followed. The second criterion captures the economic losses due to the

pandemic, denoted by Economic Loss(u0:T−1). These stem from three sources: (a) lost productivity

due to confinement, (b) lost productivity during the pandemic due to individuals being quaran-

tined, hospitalized, or deceased, and (c) lost value after the pandemic due to deaths (as deceased

individuals no longer produce economic output even after the pandemic ends).
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To model (a), we assign a daily economic value vg(`) to each individual in group g that depends

on the activity levels ` := [`g]g∈G across all groups and activities. For the working age groups, vg(`)

comes from wages from employment and is a linear function of group g’s activity level in work (`work
g )

and of the average activity levels in leisure, other and transport for the entire population (equally

weighted). This reflects that the value generated in some industries, like retail, is impacted by

confinements across all these three activities. For the school age groups, vg(`) captures future wages

from employment due to schooling and depends only on the group’s activity level in school (`school
g ).

For (b), we assume that an individual who is in quarantine, hospitalized, or deceased, generates

no economic value. At the same time, we assume that individuals in Rq
g generate economic value

as they would under no confinement. For (c), we determine the wages that a deceased individual

would have earned based on their current age until retirement age under the prevailing wage curve,

and denote the resulting amount of lost wages with vlife
g .

The overall economic loss is the difference between the economic value that would have been

generated during the pandemic under a “no pandemic” scenario (V ) and the value generated during

the pandemic, plus the future economic output lost due to deaths.

Economic Loss(u0:T−1) := V −
T−1∑
t=0

∑
g∈G

(
vg
(
`(t)

)
·Ng(t) + vg(1) ·Rq

g(t)
)

+
∑
g∈G

vlife
g ·Dg(T ), (7)

All the details of the economic modelling are deferred to Appendix EC.2.

To allow policy makers to weigh the importance of the two criteria, we associate a cost χ to each

death, which we express in multiples of GDP per capita. Our framework can capture a multitude of

policy preferences by considering a wide range of χ values, from completely prioritizing economic

losses (χ= 0) to completely prioritizing deaths (χ→∞).

3.5. Optimization Problem

The optimization problem we solve is to find control policies for confinement that minimize the

sum of mortality and economic losses2. subject to the constraints that (i) the state trajectory
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follows the SEIR dynamics, and (ii) the controls and states respect the capacity and feasibility

constraints discussed above. Formally, we solve:

min
u0:T−1

Economic Loss(u0:T−1) +χ ·Total Deaths(u0:T−1) (8)

s.t. Xt+1 =Xt +Ft (Xt,ut) , ∀0≤ t≤ T − 1 (9)

ut ∈ C(Xt), ∀0≤ t≤ T − 1. (10)

4. Algorithm: Re-Optimization with Linearized Dynamics

Solving problem (8)-(10) to optimality unfortunately requires solving intractable optimization prob-

lems. To see this, note that the key term in the dynamics of any SEIR-type model is the rate

of new infections, which involves multiplying the current susceptible population with the infected

population. This introduces non-linearity in the state trajectory; for instance, our dynamic for the

evolution of the susceptible population in group g from (EC.2) reads:

∆Sg(t) =−β(t) ·Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t)) · Ih(t)

Nh(t) +Rq
h(t)

)
.

Expanding out Sg(t) produces a complex, non-convex dependency on the past decisions `(τ) for

0≤ τ ≤ t− 1, which makes the resulting problem intractable via convex optimization.

With this in mind, we focus on developing heuristics that can tractably yield good policies, and

we propose an algorithm called Re-Optimization with Linearized Dynamics, or ROLD, that builds

a control policy by incrementally solving linear approximations of the true SEIR system.

4.1. Linearization and Optimization

The key idea is to solve the problem in a shrinking-horizon fashion, where at each time step k =

0, . . . , T we linearize the system dynamics and objective (over the remaining horizon), determine

optimal decisions for all k, . . . , T , and only implement the decisions for the current time step k.

We first describe the linearization procedure. Recall that the true evolution of our dynamical

system is given by (3). The typical approach in dynamical systems is to linearize the system

dynamics around a particular “nominal” trajectory. More precisely, assume that at time k we have
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access to a nominal control sequence ûk:T−1 and let X̂k:T denote the resulting nominal system

trajectory under the true dynamic (3) and under ûk:T−1. We approximate the original dynamics

through a Taylor expansion around (X̂t, ût):

∆Xt

∆t
≈Ft(X̂t, ût) +∇XFt(X̂t, ût)(Xt− X̂t) +∇uFt(X̂t, ût)(ut− ût), (11)

where∇XFt and∇uFt denote the Jacobians with respect toXt and ut, respectively. Note that these

Jacobians are evaluated at points on the nominal trajectory, so (11) is indeed a linear expression

of Xt and ut. By induction, every state Xt under dynamic (11) will be a linear function of uτ for

τ < t, and all the constraints will also depend linearly on the decisions.

In a similar fashion, we also linearize the objective (8). Since vg(`(t)) is linear in ut for all

t= 0, . . . , T − 1, the objective contains bilinear terms and can be written compactly as:

T−1∑
t=0

(
u>t MXt +γ>Xt

)
+η>XT , (12)

for some matrix M with dimensions |G||U|× |G||X |, and vectors γ and η of dimensions |G||X |× 1

(detailed expressions are available in Appendix EC.3). By linearizing this using a Taylor approxi-

mation, we consider the following objective instead:

T−1∑
t=0

(
û>t MX̂t + X̂>t M

>(ut− ût) + û>t M(Xt− X̂t) +γ>Xt

)
+η>XT , (13)

which depends linearly on all the decisions u0, . . . ,uT−1.

Linearization-optimization procedure. We use the following heuristic to obtain an approxi-

mate control at time k, for k= 0, . . . , T − 1:

1. Given the current state Xk and a nominal control sequence û
(k)
k:T−1 for all remaining periods,

calculate a nominal system trajectory X̂k:T under the true dynamic in (3). (The nominal

control sequence is set to a solution obtained by a gradient descent method at k = 0, and to

the algorithm’s own output from period k− 1 for periods k > 0, per Step 4 below.)

2. Use (11) to approximate the state dynamic around the nominal trajectory X̂t and use (13) to

approximate the objective-to-go function over the remaining periods t∈ {k, . . . , T} .
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3. Solve the linear program to obtain decision variables u
∗,(k)
k:T−1 that maximize the linearized

objective-to-go subject to all the relevant linearized constraints.

4. Set the nominal control sequence for the next time step as û
(k+1)
k+1:T−1 :=u

∗,(k)
k+1:T−1.

5. Update the states using the optimal control u∗k := u
∗,(k)
k and the true dynamic in (3), i.e.

Xk+1 =Xk +Fk(Xk,u
∗
k).

The linearization-optimization procedure described above is run for all periods k = 0, . . . , T − 1

sequentially to output a full control policy u∗0:T−1.

Trust region implementation. In our experiments, we have found that the linearized model

described in (11) may diverge significantly from the real dynamical system when the optimized

controls u
∗,(k)
k:T−1 determined in Step 3 diverge sufficiently from the nominal controls û

(k)
k:T−1 con-

sidered in the linearization in Step 2. This can lead to a large sensitivity in performance to the

initialization used in the very first step; for example, if the Taylor approximation were constructed

around a policy of full confinement, the linearized model could systematically underestimate the

number of infections and deaths created when considering more relaxed confinements.

We overcome this by employing an iterative procedure inspired by a trust region optimization

method. The key idea is to avoid the large approximation errors by running the linearization-

optimization procedure iteratively within each time step k, with each iteration only being allowed

to take a small step towards the optimum within a trust region of an ε-ball around the nominal

control sequence û
(k)
k:T−1, and the updated optimized control sequence of each iteration being used

as a nominal sequence for the next iteration. This leads to a procedure that is much more robust

to the initial guess of control sequence, albeit at the expense of increased computation time.

Further algorithmic details for ROLD are provided in Appendix EC.3.

5. Île-de-France Calibration and Experimental Setup

To complete the description of our framework, we now summarize our approach for calibrating our

model using real-world publicly available data on (i) community mobility, (ii) social contacts, (iii)

health outcomes, and (iv) economic output for the Île-de-France region of France.
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5.1. Parametrization and Calibration

We adopt values for disease progression parameters for Île-de-France directly from the study

by Salje et al. (2020); we adopt values for the number of social contacts across different age groups

and activities from the study of Béraud et al. (2015) focused on France, using the tool by Wille et al.

(2020); and we use Google mobility data (Google 2020) for the Île-de-France region to approximate

the mean effective lockdowns for all activities during the horizon of interest. We then estimate

any remaining parameters by minimizing the sample-average approximation of an error metric

derived by comparing our model’s predictions (on several sample paths) with time-series data from

the French Public Health Agency (French Government 2020) on hospital and ICU utilization and

deaths. We calibrate our economic model using data on full time equivalent wages and employment

rates from the French National Institute of Statistics and Economic Studies, and sentiment surveys

on business activity levels during confinement from the Bank of France. We provide all the details

for calibration and parameter specification in Appendix EC.4. We report experimental results from

sensitivity and robustness analyses on the fitted parameters in Appendix EC.6.

5.2. Model Validation

Table EC.5 in the Appendix summarizes the parameter values obtained from our calibration pro-

cedure, and Figure 2 compares the fitted model’s predictions with the reported values for hospital

beds utilization, ICU beds utilization, and cumulative deaths. To further validate our model, we

also assess the goodness of fit out of sample. In particular, for each date t from a set of four dates

in 2020, we calibrate the SEIR model using data up until day t− 14, we simulate the calibrated

model up until day t, and we compare the model predictions with the reported data in the interval

[t−13, t]. Figure EC.1 shows that the predictions of the calibrated SEIR model for all three metrics

of interest stay close to the reported values in the out-of-sample validation set. As expected, the

fit worsens when the model is estimated with less data (e.g., it is worst for the earliest of the four

dates shown).
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Figure 2 Predictions of the fitted SEIR model vs. reported values by the French Public Health Agency for Hospital

Beds Utilization, ICU Beds Utilization and Cumulative Deaths.

5.3. Experimental and Optimization Setup

We run experiments over a range of values for our model parameters, summarized in Table 1. For

parameters for which multiple values are used in our experiments, the “Baseline Value” column

reports the values used in results in the main paper and the Appendix, unless specified otherwise.

In particular, we use a baseline capacity of 2900 ICU beds in Île-de-France, and experiment with

ICU capacities that range from 2000 to 3200 beds.3. We use an infinite capacity for general

hospital wards. We optimize decisions starting on October 21 2020. We allow confinement decisions

to change every two weeks.

Optimization Horizon. We use an optimization horizon of T ′ = 90 days in the experiments

reported in the main paper (and allow up to 360 days in additional experiments). To optimize

confinements using ROLD and other policies on days 0,1, . . . , T ′− 1, we set the total time horizon

to be T = T ′+ 14 and further constrain the policies to be fully open on days T ′, . . . , T ′+ 13, while

assuming no infections are possible starting on day T ′. We do this to mitigate possible end-of-

horizon effects: any deaths and loss of economic value between day T ′ + 1 and T ′ + 14 will still

count towards the objective, so ROLD cannot quite allow for too many infections towards the end

of the T ′-day optimization horizon. We discuss further techniques for mitigating end-of-horizon

effects in Section 9.

ROLD Variants. To quantify the benefits of targeting, we consider several ROLD policies that

differ in the level of targeting allowed, which we compare over a wide range of values for χ, from 0 to
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Table 1 Parameter values for experimental and optimization setup. The parameters νother activities, r, fg and θ
related to our economic model are defined in Appendix EC.2

Parameter Description Notation Values in Experiments Baseline Value

Cost of death χ 30 values in [0,1000]× GDP per capita of France

GDP per capita of France e37199.03

ICU capacity KICU 2000, 2300, 2600, 2900, 3200 2900

Hospital capacity KH ∞
Sensitivity of econ. value on confinement νother activities 0, 0.1, 0.2 0.1

Discount rate (used to calculate vg(`) and vlifeg ) r 0.03

Fraction going to school fg
1 for g= 0-9 y.o.

0.907 for g= 10-19 y.o.

Mult. factor for value of schooling θ 0.5, 1, 5 0.5

Starting time for optimization October 21 2020

Optimization horizon T ′ {90,180,360} days 90 days

Frequency of confinement decisions 14 days

1000× the annual GDP per capita in France.4. For each χ value, we calculate all the ROLD policies

of interest, and we record separately the economic losses and the number of deaths generated by

each policy. The four versions of ROLD we consider are no targeting whatsoever (NO-TARGET),

targeting age groups only (AGE), targeting activities only (ACT), or targeting both (AGE-ACT,

or simply ROLD when no confusion can arise). To obtain each policy, we run suitably constrained

versions of the ROLD optimization problem initialized using the solution of a gradient descent

algorithm (details in Appendix EC.3.5).

6. How Large Are the Potential Gains from Dual Targeting?

We next apply our framework to the Île-de-France context to quantify the magnitude of the gains

from targeting in an idealized setting where dual targeting can be implemented. This will then

serve as a useful benchmark against which to assess more implementable targeted policies.

To isolate the benefits of each type of targeting, we compare the four versions of ROLD that

differ in the level of targeting allowed, as described in Section 5.3. Figure 3a records each policy’s

performance in several problem instances, where each problem instance corresponds to a different

value for the cost of death χ. A striking feature is that each of the targeted policies actually

Pareto-dominates the NO-TARGET policy, and the improvements are significant: relative to NO-

TARGET and for same number of deaths, economic losses are reduced by EUR 0-2.9B (0%-36.4%)
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in AGE, by EUR 0.6B-2.2B (6.5%-52.3%) in ACT, and by EUR 2.3B-5.4B (24.4%-80.6%) in AGE-

ACT. This Pareto-dominance is unexpected since it is not explicitly required in our optimization

procedure, and it underlines that any form of targeting can lead to significant improvements in

terms of both health and economic outcomes.
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Figure 3 The total number of deaths and the economic losses generated by targeted ROLD policies and the

benchmark policies. Panel (a) compares the four versions of ROLD that differ in the level of targeting

allowed. Panel (b) compares the ROLD policy that targets age groups and activities with the benchmark

policies. Each marker corresponds to a different problem instance parameterized by the cost of death

χ. We include 30 distinct values of χ from 0 to 1000×, and panel (b) also includes a very large value

(χ= 1016×, for which ROLD AGE-ACT recovers the full confinement policy).

When comparing the different types of targeting, neither AGE nor ACT Pareto-dominate each

other, and neither policy dominates in terms of the total loss objective (Figure 4a). In contrast and

crucially, AGE-ACT Pareto-dominates all other policies (and also dominates in terms of the total

loss objective). Moreover, targeting both age groups and activities leads to super-additive improve-

ments in almost all cases: for the same number of deaths, AGE-ACT reduces economic losses by
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more than AGE and ACT added together (Figure 5). This suggests that substantial complemen-

tarities may be unlocked through dual targeting that may not be available under less granular

targeting. These results are robust under more problem instances (Appendix Section EC.6.1).
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Figure 4 Total losses generated by targeted ROLD policies and by the benchmark policies, at different values of

the cost of death χ. Panel (a) compares the four versions of ROLD that differ in the level of targeting

allowed. Panel (b) compares the ROLD policy that targets age groups and activities with the benchmark

policies. Each marker corresponds to a different problem instance parameterized by the cost of death

χ. We include 30 distinct values of χ from 0 to 1000×.

To gain additional perspective on these idealized gains, we also compare ROLD AGE-ACT

with various practical benchmark policies in Figures 3b, 4b. Benchmarks ICU-t and Hybrid-t

AND/Hybrid-t OR mimic implementations in the U.S. Austin area (Duque et al. 2020) and, respec-

tively, France (Lehot and Borgne 2020). These policies switch between a stricter and a relaxed

confinement level based on conditions related to hospital admissions and occupancy and the rate

of new infections (Appendix EC.5). We optimize the parameters of these benchmark policies and

compare with the best-performing model in each class. We also consider two extreme benchmarks

corresponding to enforcing “full confinement” (FC) or remaining “fully open” (FO), which can be
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Figure 5 The super-additivity of ROLD AGE-ACT. The figures compare the improvement from AGE-ACT with

the sum of the improvements from AGE and ACT. All improvements are with respect to NO-TARGET.

The left panel compares the improvements in economic losses for the same number of deaths. The right

panel compares the improvements in total losses for the same cost of death χ.

expected to perform well when completely prioritizing the number of deaths (i.e., χ→∞) or the

economic losses (i.e., χ= 0), respectively.

ROLD Pareto-dominates all these benchmarks, decreasing economic losses by EUR 5.8B-16.9B

(66.6%-84.0%) relative to Hybrid-t AND, by EUR 7.3B-11.8B (55.5%-85.7%) relative to Hybrid-t

OR, and by EUR 5.7B-11.8B (55.5%-81.9%) relative to ICU-t for the same number of deaths.

Additionally, ROLD meets or exceeds the performance of the two extreme policies: for a sufficiently

large χ, ROLD exactly recovers the FC policy, resulting in 890 deaths and economic losses of

EUR 27.7B; for a sufficiently low χ, ROLD actually Pareto-dominates the FO policy, reducing the

number of deaths by 16,642 (76.6%) and reducing economic losses by EUR 1.6B (64.9%). The latter

result, which may seem surprising, is driven by the natural premise captured in our model that

deaths and illness generate economic loss because of lost productivity; thus, a smart sequence of

confinement decisions can actually improve the economic loss relative to FO. Among all the policies

we tested, ROLD AGE-ACT was the only one capable of Pareto-dominating the FO benchmark,

confirming that dual targeting is critical and powerful.

Another possible benefit of finer targeting is that it could reduce the time in confinement for all

groups. To check this, we calculate the time-average activity level for each age group under each

ROLD policy, averaged over the activities relevant to that age group and weighting each activity
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by the participation rate of that age group in that activity (details provided in Appendix EC.6.2).

The results are visualized in Figure 6. The dual-targeted AGE-ACT policy has higher population-

wide activity levels relative to all other policies and maintains higher activity levels for most age

groups, with systematically higher levels for the age groups that are most confined. In particular,

for the AGE-ACT policy the group with the lowest median activity level (of 81.7%) is the 40-

49 y.o., whereas under the AGE (ACT) policy, that group is the 80+ (60-69) y.o., with median

activity level of 34.2% (75.3%). This is a reasonable requirement when considering the “fairness”

of confinement policies.5. Moreover, even when AGE-ACT confines certain age groups more than

other policies, it never does so by much: its activity levels are within 5% (in absolute terms) from

the levels achieved by ACT (respectively, AGE and NO-TARGET) for every age group in 96%

(57%, 98%) of all instances, and within 10% from ACT (respectively, AGE and NO-TARGET) for

every age group in 98% (88%, 98%) of all instances.

These results suggest that dual targeting has the potential to improve outcomes along multiple

dimensions: in terms of both health and economic outcomes, and by generating more socially

acceptable confinements, through a reduced and more “fair” distribution of confinement time.
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Figure 6 Time-average activity level for the targeted ROLD policies. Each boxplot depicts the time-average

activity level under the respective policy averaged over the activities relevant to that age group and

weighting activities by participation rates, for different problem instances parameterized by χ. The first

boxplot on the left depicts activity levels aggregated over all the age groups.
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7. How Do Gains Arise from Dual Targeting?

That targeting can generate such improvements along multiple metrics is quite unexpected because

this is not something that the ROLD framework explicitly optimizes for (recall that the ROLD

objective only involves a total loss metric). To better understand how gains could arise from

targeting, we now examine the structure of the optimal dual-targeted ROLD decisions and explain

these as well as their associated gains in terms of a set of interpretable features.

7.1. Dual Targeting Generates Complementarities

By examining the optimal ROLD AGE-ACT decisions, we first note that the policy maintains high

activity levels for (age group, activity) pairs with high economic value and few social contacts. This

can be visualized in Figure 7, which plots the activity levels for different (age group, activity) pairs

divided into three buckets (high, medium, low) depending on their econ-to-contacts-ratio. This is

defined as the marginal economic value divided by the total social contacts generated by a group

in an activity, i.e.,

econ-to-contacts-ratio(g, a, t) :=
∂Economic Value(t)/∂`ag(t)

Ng(t)
∑

h∈G C
a
h,g

,

where Economic Value(t) =
∑

g∈G

(
vg (`(t)) ·Ng(t) + vg(1) ·Rq

g(t)
)
. Similarly, Figure 8 shows that

ROLD prioritizes activity in transport, school, work, other, and then leisure, in that order, in accor-

dance with the relative econ-to-contacts-ratio of these activities.6.

To understand how complementarities arise in this context, note that the ability to separately

target age groups and activities allows the ROLD policy to fully exploit the fact that distinct

age groups may be responsible for the largest econ-to-contacts-ratio in different activities. As an

example, the 20-69 y.o. groups have the highest ratio in work, whereas the 0-19 y.o. and 70+ y.o.

groups have the highest ratio in leisure. Accordingly, ROLD coordinates confinements to account

for this (see Figure 9): groups 20-69 y.o. remain more open in work but face confinement in leisure

for up to the first ten weeks, whereas groups 0-19 and 70+ y.o. remain quite open in leisure but have

reduced activity in work. These complementary confinement schedules allow ROLD to reduce both
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Figure 7 The time-average activity levels of optimized ROLD AGE-ACT policies for different (age group, activity)

pairs, bucketed in three equally-sized buckets according to their econ-to-contacts-ratio. The lines indicate

the median for each bucket while the bands indicate interquartile ranges, where for each value of the

cost of death χ, the statistics are taken over the relevant (age group, activity) pairs.
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Figure 8 The time-average activity levels of optimized ROLD AGE-ACT policies for different activities. The lines

indicate the median for each activity, while the bands indicate interquartile ranges, where for each value

of the cost of death χ the statistics are taken over the relevant age groups for that activity.

the number of deaths and economic losses, with the important added benefit that no age group

is completely confined. (For an additional visualization, Figure EC.4 in the Appendix depicts the

ROLD activity levels for a specific value of the cost of death χ.)
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Figure 9 The activity levels of optimized ROLD AGE-ACT policies for work and leisure, and for the 20-69 y.o.,

vs. the 0-19 and 70+ y.o. age groups. The lines indicate mean activity levels, where for each time t

the mean is taken across different values for the cost of death χ and across the respective relevant age

groups. (The figure is best viewed in color.)

7.2. Understanding Dual-Targeted Policies and Their Gains

To gain a better understanding of the ROLD policy and the potential benefits of dual targeting, we

also take a different approach and train interpretable machine learning models (regression trees)

to predict (i) the optimal ROLD decisions and (ii) the gains from dual targeting, as a function of

several salient epidemiological and economic features.

More specifically, we generate problem instances with randomly drawn values from a wide range

for the transmission rate β (equivalently, for the basic reproduction number R0), the disease sever-

ity (“severity-scaling” — a scaling factor for the probabilities of an infectious individual having

severe symptoms {pss,g}g∈G), the social mixing parameter α (or equivalently, the elasticity of social

contacts to activity levels7. ), the cost of death χ, the ICU capacity KICU, and the economic model

parameters νwork, νother activities, νfixed. We create 14,039 problem instances by drawing each param-

eter independently and uniformly at random from a specified range. Details for the parameter

variation are provided in Appendix EC.6.4 and in particular in Table EC.9.

Interpreting the dual-targeted policy. We create a training set of 5,524,785 samples — with

one sample for every 14-day period, each age group g, and each activity a relevant to that age group.

We fit a decision tree to predict the ROLD AGE-ACT-optimized activity levels `ag(t) based on 20
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features. We include as features several important problem parameters (e.g., the basic reproduction

number R0, the cost of death, the elasticity of social contacts to activity levels, the ICU capacity)

as well as derived features based on parameters and SEIR state values (e.g., econ-to-contacts-ratio,

ICU utilization and admission rates, infection rates). Some of these features are targeted, meaning

they take different values for different age groups or activities (e.g., econ-to-contacts-ratio), whereas

others are non-targeted, such as R0, the time t or the cost of death χ. The details of the fitting

procedure are in Appendix EC.6.4.1, and the full set of features is in Tables EC.10 and EC.11.

Figure 10 displays the depth-four tree obtained by fitting using the entire feature set, together

with the resulting root-mean-squared-error (RMSE). This simple tree predicts the optimal ROLD

activity levels reasonably well (RMSE of 0.31) and confirms our core insight that the econ-to-

contacts-ratio is the most salient feature when targeting confinements, as it is used as a split

variable in the root node of the tree and in several sub-trees, with higher ratios always leading to

higher activity levels. The tree also confirms that R0 and time are relevant, with the optimal ROLD

policy enforcing stricter confinements for larger values of R0 and in earlier time periods. Another

relevant feature is R-perc, which quantifies the total number of individuals in a recovered state as

a fraction of the overall population; this is a natural measure of the level of herd immunity and

the ROLD policy leverages it intuitively, allowing more activity at larger levels of herd immunity.

We also quantify the importance of the various features by calculating their permutation impor-

tance scores, a commonly used metric that measures importance as the increase in model prediction

error after the values of the respective feature are randomly permuted. For trees of depth four, the

scores for econ-to-contacts-ratio, R0, time, R-perc(t), and Ng(t) are respectively 0.163, 0.065, 0.037,

0.008, 0.007; and all the other features have scores of zero. The econ-to-contacts-ratio feature thus

has by far the largest permutation importance score of all features. Figure EC.6 in the Appendix

confirms similar results for a tree of depth 10, and Figure EC.7 documents an additional exercise

that further shows econ-to-contacts-ratio as the most salient of all targeted features. Appendix EC.7

contains additional results to complement this section, including a theoretical justification for the

salience of the econ-to-contacts-ratio derived in a simplified model.
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econ-to-contacts-ratio <= 0.7034
samples = 5,524,785
activity level = 34.49%

econ-to-contacts-ratio <= 0.0875
samples = 2,868,404
activity level = 12.67%

True

R0 <= 4.1065
samples = 2,656,381
activity level = 58.05%

False

econ-to-contacts-ratio <= 0.0115
samples = 1,562,932
activity level = 2.12%

R0 <= 2.1779
samples = 1,305,472
activity level = 25.30%

econ-to-contacts-ratio <= 0.0012
samples = 1,269,478
activity level = 0.21%

R-perc <= 0.566
samples = 293,454

activity level = 10.39%

samples = 1,231,230
activity level = 0.11%

samples = 38,248
activity level = 3.57%

samples = 287,632
activity level = 8.94%

samples = 5,822
activity level = 81.89%

time <= 35
samples = 223,762

activity level = 60.65%

time <= 77
samples = 1,081,710
activity level = 17.99%

samples = 95,898
activity level = 36.45%

samples = 127,864
activity level = 78.81%

samples = 927,180
activity level = 11.53%

samples = 154,530
activity level = 56.78%

R-perc <= 0.1693
samples = 1,182,202
activity level = 80.01%

time <= 63
samples = 1,474,179
activity level = 40.43%

econ-to-contacts-ratio <= 3.8824
samples = 283,195

activity level = 58.73%

R0 <= 2.7911
samples = 899,007

activity level = 86.72%

samples = 178,610
activity level = 44.68%

samples = 104,585
activity level = 82.74%

samples = 513,634
activity level = 94.16%

samples = 385,373
activity level = 76.79%

econ-to-contacts-ratio <= 5.4876
samples = 1,052,985
activity level = 29.57%

N <= 1167045
samples = 421,194

activity level = 67.61%

samples = 749,535
activity level = 19.46%

samples = 303,450
activity level = 54.52%

samples = 142,488
activity level = 37.00%

samples = 278,706
activity level = 83.26%

Decision tree for all activities
RMSE: 0.31291

Figure 10 Decision tree of depth four approximating the optimized ROLD AGE-ACT decisions trained on 14,039

problem instances with an optimization horizon of T ′ = 90 days (a total of 5,524,785 samples). Nodes

are color-coded based on activity level, with darker colors corresponding to stricter confinement.

Interpreting the gains from dual targeting. For each of the 14,039 problem instances, we

retrieve the optimal policies under ROLD AGE-ACT, ACT, and NO-TARGET, and calculate

the relative gain of ROLD AGE-ACT over the less targeted policies ROLD NO-TARGET and

ROLD ACT in terms of the total loss objective. We then fit decision trees to predict these relative

gains. We include as features several problem parameters (e.g., the basic reproduction number

R0, the cost of death, the disease severity, the elasticity of social contacts to activity levels, the

ICU capacity) and derived features based on statistics of the econ-to-contacts-ratio across age

groups and activities. Specifically, because each sample in the training set corresponds to an entire

problem instance (including all time periods and all age groups and activities), we first calculate
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econ-to-contacts-ratio values at the start of the pandemic, denoted as time t0:

econ-to-contacts-ratio(g, a, t0) :=

(
∂Economic Value(t)/∂`ag(t)

)
t=t0

Ng(t0)
∑

h∈G C
a
h,g

,

and use these to calculate two kinds of economic features: (i) for each activity other than home, we

take the standard deviation of econ-to-contacts-ratio across all age groups that are active in that

activity, which we label econ-to-contacts-ratio-activity-stdev; (ii) for each age group, we take the

standard deviation of econ-to-contacts-ratio across all activities (other than home) in which that

age group is active, which we label econ-to-contacts-ratio-agegroup-stdev. (Relevant activities for

each age group are listed in Table EC.8.) The full set of features is summarized in Table EC.12

and the details of the fitting procedure can be found in Appendix EC.6.4.2.

To appreciate how the various features influence the gains, consider Figure 11, which displays

permutation importance scores corresponding to depth-10 trees for explaining the gains of the

ROLD AGE-ACT policy over ROLD NO-TARGET and ROLD ACT; and Figures EC.8 and EC.9

in the Appendix, which depict trees of depth five explaining the same gains.

0.0 0.2 0.4 0.6 0.8
Permutation Feature Importance

R0

econ-to-contacts-ratio-40-49-stdev
econ-to-contacts-ratio-20-29-stdev

severity-scaling
econ-to-contacts-ratio-work-stdev

contacts-elasticity
econ-to-contacts-ratio-leisure-stdev

0.0 0.2 0.4 0.6 0.8
Permutation Feature Importance

R0

severity-scaling

econ-to-contacts-ratio-work-stdev

contacts-elasticity

Figure 11 Permutation feature importance for the depth-10 decision trees explaining the relative gains of ROLD

AGE-ACT over ROLD NO-TARGET (left) and ROLD ACT (right).

The most salient features for predicting the gains of dual targeting are R0, the cost of death

χ, the heterogeneity in the econ-to-contacts-ratio values, the disease severity, and the elasticity

of social contacts to activity levels. The two most important features, R0 and χ, impact gains in

a similar, non-monotonic fashion, with moderate values leading to larger gains than very low or
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very high values. This can be best viewed in the partial dependence plots shown in Figure 12. This

is explainable because all policies tend to enforce similar activity levels at very low or very high

values of R0 or χ (that is, high activity values at sufficiently low values of R0 or χ, and vice-versa),

which limits the benefits that could be generated through more refined targeting.

Figure 12 also leads to practical insights. Policy makers faced with pandemic variants with very

high basic reproduction number R0 and who heavily prioritize health over economic outcomes

should not concern themselves with targeting. The gains are also generally smaller in regimes with

low R0 — although then, dual targeting could lead to more substantial gains for policy makers who

weigh more heavily (albeit not too heavily) health over economic outcomes. Lastly, in regimes with

moderate values of R0, all policy makers would gain substantially from targeting, and especially

those who weigh economic outcomes more heavily.
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Figure 12 Partial Dependence Plots for the depth-10 decision trees showing the relative gains of ROLD AGE-

ACT over ROLD NO-TARGET (left) and ROLD ACT (right) as a function of R0 and χ. The color

scale depicts the magnitude of the relative gains. (The figure is best viewed in color.)

The gains from dual targeting increase as the heterogeneity in the econ-to-contacts-ratio values

(captured by the standard deviation) increases. This aligns well with the intuition developed in
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Section 7.1 that dual targeting exploits such heterogeneity to prioritize which (age group, activity)

pairs to keep open. Intuitively, the gains relative to no-targeting are explained by heterogeneity

across both age groups and activities, with the 40-49 and 20-29 y.o. emerging as the most relevant

groups and work, leisure as the most relevant activities; in contrast, the gains relative to activity-

based targeting are best explained by heterogeneity across age groups alone (in the work activity).

Generally, the gains decrease as the disease severity increases, reflecting that a higher probabil-

ity of severe symptoms limits the improvements available from finer targeting. In the regime of

small R0, where the gains from targeting are limited, lower severity predicts even smaller gains.

This is consistent with all policies recommending high activity levels, which leaves little room for

improvements from targeting.

8. Towards Practically Implementable Policies

The previous sections established dual targeting as an idealized benchmark. However, discriminat-

ing activity levels based on age can be challenging in practice, from both an operational and an

ethical/legal standpoint. We thus study two policy variations inspired by real-world interventions

that are simpler to implement than dual targeting and that retain some of its superior health and

economic outcomes.

In the first proposal, we consider curfews for different activities, implemented uniformly over

all age groups. These draw inspiration from real-life policies during COVID-19: as an example,

France implemented population-wide curfews during the first half of 2021 that started at a time

varying from 6 p.m. to 11 p.m. and lasted until 6 a.m., while maintaining school and work activities

largely de-confined (Reuters 2021). This is effectively implementing restrictions similar to ROLD

AGE-ACT: under a 6 p.m. curfew, a typical member of the 20-65 y.o. group would be engaged in

work until the start of the curfew, so their leisure and other activities would be quite restricted;

in contrast, since most individuals aged above 65 are not in active employment, they would not

face such restrictions in these last two activities. More generally, since separate age groups spend

different parts of the day in different activities, curfews are a potential way to implicitly target age

groups, but are operationally simpler and less contentious than the ROLD AGE-ACT policy.
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In the second proposal, we consider recommending, as opposed to enforcing, targeted activity

levels separately for each age group, while accounting for imperfect population compliance. Such

recommendations have been deployed in the pandemic response of many countries, with govern-

ments encouraging specific at-risk groups such as the elderly to limit their activities outside of

home (see the examples in Table EC.15). Such policies are thus more readily implementable than

fully targeted confinements, and our goal with the exercise is to determine the compliance levels

needed to ensure a sufficiently good performance relative to activity-based targeting.

8.1. Optimized Curfews

We focus on practical curfew policies: we do not allow targeting by age groups, we consider a single

start and end-time within a 24-hour day (further constrained to occur at the hour or half-hour

mark), we assume that activity levels are completely restricted during the curfew and unrestricted

otherwise, and we allow curfews to change at most once every two weeks.

To formalize our model, we break the 24-hour day into 48 slots of 30 minutes each, starting at the

hour and half-hour mark. For day t, we denote the τ -th time slot of the day by tτ , for τ = 1, . . . ,48,

with τ = 1 denoting the 12 a.m.-12.30 a.m. time window. We encode the curfew for activity a as

starting at the beginning of slot sastart(t) and ending at the end of slot saend(t). For each activity

a ∈ A \ {home}, we let `a(tτ ) denote the activity level allowed during time slot τ of day t, which

we take to be 0 during the curfew and 1 outside of the curfew; we set `home(t) = 1 throughout.

To model curfews, we refine our social mixing model to take into account the participation rates

of different age groups in distinct activities throughout the day. To that end, we requested and

obtained time-use survey data from the French National Archive of Data from Official Statistics

(ADISP, INSEE 2010) that include detailed information of how survey participants of different

ages spent every 10-minute interval of their day, from which we estimate participation rates in the

different activities (details of our procedure are discussed in Appendix EC.8.1). Let Rag(τ) denote

the participation rate of age group g in activity a during time slot τ of a generic day, so that∑
a∈ARag(τ) = 1,∀τ, g. As in our base model, let cg,h(`(t)) denote the mean number of total daily
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contacts between an individual in group g and individuals in group h across all activities during

day t, when the activity levels are `(t). We then set

cg,h(`(t)) =
∑
a∈A

Ca
g,h

∑
τ Rag(τ)Rah(τ) · (`a(tτ ))2α∑

τ Rag(τ)Rah(τ)
. (14)

This expression extends our base-case social mixing model from Section 3 by capturing the distinct

participation rates of the age groups through a weighted-average combination of contacts during

the day. Note that if we removed the differentiation between time slots, i.e., `ag(tτ ) = `ag(tτ ′) =

`ag(t),∀ τ, τ ′, g, a, then (14) would collapse to our familiar social mixing model in (1) (for the case

when all age groups have the same activity levels).

To determine the optimized curfew policy, which we henceforth refer to as CURFEW, we solve

an optimization problem analogous to the one in (8)-(10), with the following modifications. First,

the decision variables are the “start” and “end” time of the curfew in each activity on each

day t, {sastart(t), s
a
end(t)}a∈A, allowed to change once every 14 days. Second, the calculation of

Economic Loss in the objective replaces `(t) in (7) with `eff(t), where `eff(t) := [`a,eff
g (t)]a∈A,g∈G and

`a,eff
g (t) :=

∑
τ Rag(τ)`a(tτ )∑

τ Rag(τ)
, ∀g, a (15)

denotes the (weighted-average) effective activity level of group g in activity a during day t, account-

ing for the group’s participation rates. Third, the SEIR dynamics in constraint (9) are modified

to reflect the revised social mixing in (14). Lastly, we solve the optimization problem through a

gradient descent procedure, and round its optimal solution to the closest hour or half-hour mark

(details are provided in Appendix EC.8.2).

Figure 13 shows that optimized curfews can significantly outperform ROLD ACT in terms of

the total loss objective: CURFEW closes 24.3% (median value) of the performance gap between

ROLD AGE-ACT and ROLD ACT, and the improvement can reach up to 65.1% of the gap for

moderate values of the cost of death χ, namely χ= 145. As a side remark, we conjecture that these

improvements are conservative estimates of what is achievable because the optimization procedure

used for CURFEW is significantly less sophisticated than the one used for ROLD AGE-ACT.
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Figure 13 The performance of the CURFEW policy expressed as a fraction of the gap in total loss between

ROLD ACT and AGE-ACT that it recovers. We include 199 distinct values of χ, from 0 to 1000×.

That CURFEW can recover a substantial portion of AGE-ACT’s performance despite not explic-

itly targeting age groups suggests that time-of-day targeting implicitly allows some differentiation

by age. To examine this, we calculate the time-average activity levels of all the relevant age groups

engaged in a given activity (per Table EC.8), based on which we determine the range of activity

levels encountered across groups. Figure 14 plots the magnitude of these ranges for the CURFEW

policy. When comparing these with ROLD ACT, which by definition has zero range in each activity,

it can be seen that CURFEW effectively differentiates restrictions by age in each activity.

Overall, these results highlight the benefits of the CURFEW policy, which can significantly

improve performance relative to ROLD ACT without incurring the operational or ethical imple-

mentation challenges of ROLD AGE-ACT.

8.2. Dual-Targeted Recommendations with Limited Compliance

We next examine a practically-appealing implementation of dual targeting that phrases ROLD’s

output as recommendations instead of mandatory restrictions and that also accounts for imperfect

compliance, whereby only a subset of the population would follow the recommendations. More

formally, we capture compliance through a parameter p, with 0≤ p≤ 1, such that a p fraction of the

population of each age group adheres to the recommended age group-targeted activity levels, and
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Figure 14 The range of time-average activity levels (defined as maximum minus minimum level over all relevant

age groups) for the CURFEW policy, in several problem instances parametrized by χ. In comparison,

the ROLD ACT policy has equal activity levels for all age groups, and thus zero range for each activity.

the remaining 1−p fraction does not adhere, but must still abide by a population-wide restriction

in each activity (which is assumed enforceable, as in ROLD ACT). We refer to the resulting policy

as the ROLD COMP(p) policy.

More precisely, ROLD COMP(p) still optimizes for ` via the optimization problem (8)-(10), but

builds in limited compliance into this optimization by adding the following constraints:

`ag(t) = p ·xag(t) + (1− p) · ya(t), ∀g, a, t (16)

ya(t)≥ xag(t), ∀g, a, t (17)

0≤ xag(t)≤ 1, ∀g, a, t (18)

0≤ ya(t)≤ 1, ∀a, t. (19)

This confinement policy can be interpreted as a linear combination of two policies: an age-and-

activity targeted policy, xag(t), which the policy maker can only recommend; and an activity-only

targeted policy, ya(t), which the policy maker enforces. The linear weights reflect the percentage

of the population that would be compliant with the recommendation xag(t), versus those who

would only abide by the enforceable activity levels ya(t). Constraint (17) then expresses that the

enforceable activity level cannot be more restrictive than the recommended one.
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Figure 15, which shows ROLD COMP(p)’s performance for different compliance levels p, confirms

the practical promise of the approach. The left panel, which depicts the fraction of the performance

gap (in terms of the total cost objective) between ROLD ACT and AGE-ACT recovered by ROLD

COMP(p), suggests that significant improvements are already available at relatively modest com-

pliance levels. Specifically, the median gap recovered is 10.4% at 40% compliance and 19.2% at

60% compliance. As p increases, the performance naturally improves, and the relationship between

performance and compliance level is overall convex, with larger marginal gains occurring at higher

compliance levels.8. The right panel suggests that ROLD COMP(p) Pareto-dominates ROLD ACT

even for small compliance levels when restricting to moderate values of χ, and Pareto-dominates

over all tested χ’s for sufficiently large levels of compliance. We also consider a variation of limited

compliance in which we allow each age group to have a group-specific compliance fraction calibrated

from empirical data (Ganslmeier et al. 2022) and the resuls are very similar (Appendix EC.8.4).
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Figure 15 The performance of limited compliance policies for different compliance levels. In the left panel, each

boxplot summarizes the fraction of the ROLD ACT/AGE-ACT performance gap (in terms of the total

cost objective) that ROLD COMP(p) recovers, in 201 problem instances parametrized by the cost of

death χ (with values from 0 to 1000×). The right panel illustrates the total number of deaths and the

economic losses generated by ROLD COMP(p) for different compliance levels p, compared to ROLD

AGE-ACT and ROLD ACT; each marker corresponds to a different value of χ.
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These results suggest that recommendations for reducing activity levels according to the dual-

targeted ROLD AGE-ACT policy, accompanied by reasonable levels of compliance in the popula-

tion, can lead to significant health and economic benefits compared to less targeted policies.

9. Discussion

Our study established that dual targeting could in principle lead to significant benefits and that

certain simple, practical policies can achieve some of these benefits. Dual targeting can improve

both health and economic outcomes and it can maintain higher activity levels for most age groups

(and particularly for those most confined), thus making confinements more socially acceptable.

Such benefits are generated by heavily leveraging complementarities through a simple “bang-for-

the-buck” rule: impose less confinement on group-activity pairs with a high econ-to-contacts-ratio,

i.e., high marginal economic value prorated by activity-specific social contacts. The gains afforded

by targeting are generally largest for moderate values of the basic reproduction number R0 and the

cost of death, high heterogeneity in the econ-to-contacts-ratio, and low disease severity. Because

dual targeting can face significant implementation challenges, we introduced two practical proposals

— based on curfews and recommendations — that achieve some of the benefits without explicitly

discriminating based on age.

Future work. The algorithmic developments in our proposed framework for quantifying the

possible benefits of dual targeting could be improved in several ways. One is end-of-horizon effects:

ROLD may allow for increased infections as it nears the end of the horizon, since these may

not progress to deaths. A policy maker may want to adjust ROLD’s behavior to prevent this,

for example through a thorough sensitivity analysis of the optimal policy with respect to the

problem horizon, or by imposing penalties on the remaining infections, or by running ROLD in a

rolling (non-shrinking) horizon fashion. Secondly, as seen with emerging COVID-19 variants, the

underlying epidemic environment could change during a typical ROLD time horizon. To track and

respond to such changes, a potential approach could be to re-estimate the model parameters on

the fly as ROLD advances, or to adopt a robust model that explicitly allows for mis-specification.



Author: Targeting for Pandemic Response
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 39

One could also consider second-order approximations of the dynamics and objective and leverage

(non-convex) quadratic programming to deal with the resulting optimization problems. Lastly,

work could also be devoted to deriving a theoretical justification for the importance of the econ-

to-contacts-ratio by generalizing our simple analysis in Appendix EC.7, or by deriving tractable

upper bounds for the performance of controlled SEIR models that could be used to benchmark

interventions.

Our modeling choices were constrained by available data, but further data collection may allow

for more precise modeling. Our social mixing model relied on social contact matrices by age group

and activity, which are available from surveys conducted in a number of countries; additional data

may allow refining the population group or activity definitions. Additionally, the available social

contacts data only record interactions in the same activity, whereas contacts occur as individuals

are engaged in different activities (e.g., a services industry professional interacts during work with

individuals who are engaged in leisure activities). A more refined mixing model that captures

such interactions would be desirable, provided that data are available to calibrate it. Similarly, we

worked with economic data reported by industry activities and for coarse population groups, but a

dataset that splits economic value into fine-grained (group, activity) contributions would be more

suitable. Lastly, a more detailed economic model would include cross effects, e.g., children in school

producing value in conjunction with educational staff engaged in work.

Although we focus on confinements, a direction for future research is to see how to combine

these with other types of targeted interventions. The framework is sufficiently flexible to accommo-

date interventions such as contact tracing, mass testing and also vaccinations, although a careful

implementation is beyond the scope of this article.

Finally, to address fairness concerns related to targeting in a principled way, one could impose

fairness requirements based on the interventions’ actions and/or outcomes, e.g., requiring that the

health or economic losses or the time in confinement faced by different groups should satisfy certain

axiomatic fairness properties (Young 1994).
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E-companion to Quantifying and Realizing the Benefits of
Targeting for Pandemic Response

EC.1. Dynamics of the Controlled SEIR Epidemic Model

We write down a set of discrete time dynamics for the controlled SEIR model. We use notation
∆Z(t) to denote Z(t+ 1)−Z(t). For all groups g ∈ G, we have:

∆Ng(t) =−µ · (pHg + pICUg ) · Ig(t)︸ ︷︷ ︸
infected going to ICU, H

(EC.1)

∆Sg(t) =−β(t)Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t))
Ih(t)

Nh(t) +Rq
h(t)

)
(EC.2)

∆Eg(t) = β(t)Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t))
Ih(t)

Nh(t) +Rq
h(t)

)
−σEg(t) (EC.3)

∆Ig(t) = σEg(t)−µ · (pHg + pICUg ) · Ig(t)︸ ︷︷ ︸
go to ICU, H

−µ · (1− pHg − pICUg ) · Ig(t)︸ ︷︷ ︸
recover

(EC.4)

∆Rg(t) = µ · (1− pHg − pICUg ) · Ig(t) (EC.5)

∆Rq
g(t) = λHg · pRg ·Hg(t) +λICUg · pRg · ICUg(t)︸ ︷︷ ︸

recovery of known infected cases

(EC.6)

∆Hg(t) =−λHg Hg(t) +µ · pHg · Ig(t)−BH
g (t) (EC.7)

∆ICUg(t) =−λICUg ICUg(t) +µ · pICUg · Ig(t)−BICU
g (t) (EC.8)

∆Dg(t) = λHg · pDg ·Hg(t) +λICUg · pDg · ICUg(t) +BH
g (t) +BICU

g (t). (EC.9)

In (EC.5) and (EC.6), note that we do not have terms for the population turned away from
hospital/ICU which may eventually recover. Instead, we assume the turned away patients will go
into the deceased state. In (EC.9), we are assuming that if a patient is turned away from the ICU,
they transition into deceased, instead of being allocated a hospital bed if one is available.

We now provide justification for how we account for social contacts and, in particular, for the
expressions in (EC.2) and (EC.3). We note that individuals in Rq

g can interact with members of
Sg,Eg, Ig and Rg. Fix a person i in age group g ∈ G, in state Sg. Then:

Pr

(⋃
h∈G

{i got infected through socializing with age group h}

)
(EC.10)

= Pr

(⋃
h∈G

{i got infected through socializing with individuals in Ih}

)
(EC.11)

= 1−Pr ({i did not get infected through socializing with individuals in any Ih for any h∈ G})
(EC.12)

= 1−
∏
h∈G

Pr ({i did not get infected through socializing with individuals in Ih}) (EC.13)

= 1−
∏
h∈G

(
1−β(t)

Ih(t)

Nh(t) +Rq
h(t)

)cg,h
(EC.14)

≈ 1−
∏
h∈G

(
1−β(t)cg,h

Ih(t)

Nh(t) +Rq
h(t)

)
(EC.15)
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≈ β(t)
∑
h∈G

cg,h
Ih(t)

Nh(t) +Rq
h(t)

. (EC.16)

In (EC.14) we use the following reasoning. Having fixed person i in age group g, (a) a contact with
a randomly chosen individual in group h will result in person i getting infected with probability
β(t) Ih(t)

Nh(t)+R
q
h

(t)
, and (b) the number of person i’s contacts with individuals in age group h is given

by cg,h = cg,h(`g(t), `h(t)). Finally, person i getting infected as the result of a contact with someone
from group h is considered to be an independent event across different contacts, therefore we raise
the probability of no infection from a contact to the power of the number of contacts. (EC.15)
and (EC.16) follow from linear approximations.

By taking the expectation of random variable∑
i∈Sg

1{i got infected through socializing},

we retrieve the expressions in (EC.2) and (EC.3).

EC.2. Details of the Economic Model

As discussed in Section 3.4, economic losses come from three separate sources:

Effect of confinement. To account for confinement in the non-quarantined population, we
make the economic value generated per day by an individual in group g in the remaining (non-
quarantined) SEIR chambers explicitly depend on the enforced confinement in the population.
Recall that for a group g, the activity levels `g specify the level of each activity allowed for that
group as compared to normal course, and ` = [`g]g∈G. We denote the economic value generated by a
member of g per day by vg(`). We remark that vg(1) corresponds to the economic value generated
by an individual under normal circumstances.

The vg(`) specific to a group can be of two types: (a) wages from employment and (b) future
wages from employment due to schooling. Naturally, depending on the age group, both, one, or
neither of these will actually contribute to economic value. Distinguishing whether the specific
group is comprised of school age, employable or retired population, we define

vg(`) :=


vschooling
g (`) if g = 0-9 y.o.

vemployment
g (`) + vschooling

g (`) if g = 10-19 y.o.

vemployment
g (`) if g = 20-29, 30-39, 40-49, 50-59, 60-69 y.o.

0 otherwise.

(EC.17)

We break down the definitions of vschooling
g (`) and vemployment

g (`) below:
• Value from employment vemployment

g (`). The value generated from employment is a func-
tion of the confinement level in the work activity, but also of the confinement levels in leisure,
transport, as well as other activities. As an example, we expect the economic value generated by
those employed in restaurants, retail stores, etc. to depend on foot traffic levels, which in turn are
driven by the confinement levels in leisure, transport and other activities across all groups.

Our model for employment value is a linear parametrization of these confinement decisions;
specifically, vemployment

g (`) is linear in `work
g and the weighted average of `transport, `leisure and `other across

these three activities and all groups g ∈ G:

vemployment
g (`) :=wg ·

(
νwork · `work

g + νother activities ·

(
1

|G|
∑
h∈G

w transport`transport
h + w leisure`leisure

h + w other`other
h

)
+ νfixed

)
.

(EC.18)
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Additionally, νwork, νother activities and νfixed are activity level sensitivity parameters such that νwork · 1 +
νother activities · 1 + νfixed = 1; under fully open activity, they induce a multiplier of 1 in (EC.18). Then wg
measures the overall daily employment value of a typical member of group g under no confinement, and is
equal to vemployment

g (1). The weights w transport,w leisure,w other capture the relative importance of each of these
three activities for employment value. For our baseline setting, we take w transport = w leisure = w other = 1/3. We
let these parameters vary in our analyses in Section 7.2.

We estimate the coefficients of this model from data, as we describe in detail in Section EC.4.

• Value from schooling vschooling
g (`). A day of schooling for the individuals in relevant groups results in

economic value, equal to a day of wages that members of these groups would gain in the future. We use the
salary of the 20-29 year-old group multiplied by a factor, and we discount for a number of years corresponding
to the difference between the midpoint of the age group and the beginning of the 20-29 year-old group. For
instance, for the 0-9 year olds we discount over 15 years, and for 10-19 year olds we discount over five years.
The discounting factor we apply is thus

δg :=


(1 + r)−15 if g= 0-9 y.o.

(1 + r)−5 if g= 10-19 y.o.,

0 otherwise,

where r is the discount rate. We further multiply the wage by fg, which is the fraction of group g that is in
school.9. Lastly, we also use a multiplicative factor θ for sensitivity analysis: θ reflects that an additional day
of schooling may have a multiplier effect in future wages, as well as the fact that schooling can be continued
online during lockdowns. We provide ranges for θ in Section 5.3.

Thus, the definition for value of school days is

vschooling
g (`) := θ · fg · δg · vemployment

20-29 y.o (1) · `school
g . (EC.19)

Effect of quarantine, illness and deaths during the pandemic. We capture the economic
effect of quarantine, hospitalization, and death during the pandemic by assuming that if at
some time period an individual in group g is in one of the SEIR chambers Hg, ICUg, Dg, then
they generate no economic value. At the same time, we assume that individuals in Rq

g generate
economic value as they would under no confinement.

Effect of lost future wages due to death. We account for a deceased individual’s lost wages
which they would have earned from their current age until retirement age, given the prevailing
wage curve under normal circumstances, {vg(1)}g∈G. For group g, we set the current age to the
midpoint of the age group. We discount the resulting cash flows by an annualized interest rate. We
denote the resulting lost wages amount by vlife

g .
For instance, for someone in age group 30-39 y.o., we calculate this cash flow by10.

vlife
30− 39 y.o. :=

69∑
τ=35

1

(1 + r)τ−35

·
(
1{35≤ τ ≤ 39} · vemployment

30− 39 y.o. (1) +1{40≤ τ ≤ 49} · vemployment
40− 49 y.o. (1)

+1{50≤ τ ≤ 59} · vemployment
50− 59 y.o. (1) +1{60≤ τ ≤ 69} · vemployment

60− 69 y.o. (1)
)
. (EC.20)

Last, we define a quantity V which represents the economic value that would be generated across
all groups g ∈ G, during the time of the pandemic, under a “no pandemic” scenario. More precisely,
to calculate V we assume that at time t= 0 all the infected population is instantaneously healed
and able to generate full economic value vg(1). Thus,

V :=
T−1∑
t=0

∑
g∈G

vg(1) ·
(
Ng(0) +Hg(0) + ICUg(0) +Rq

g(0)
)
. (EC.21)

Note that this term is a constant and does not depend on the policy followed by the policy maker.
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EC.3. Algorithmic Details for ROLD

In this section, we clarify the algorithmic details of the linearization-optimization procedure
described in Section 4. We first focus on how we build a linear model given k,Xk and ûk:T−1.

EC.3.1. Linearized Dynamics

In Step 2, the algorithm builds an approximation of the state dynamics that is linear in the controls
uk, . . . ,uT−1. Here, we compute the coefficients for each ut explicitly. We introduce the notation:

At := I+ ∆t · ∇XFt(X̂t, ût) (EC.22)

Bt := ∆t · ∇uFt(X̂t, ût) (EC.23)

ct := ∆t ·
[
Ft(X̂t, ût)−∇XFt(X̂t, ût) · X̂t−∇uFt(X̂t, ût) · ût

]
, (EC.24)

where matrix At has dimensions |G||X | × |G||X |, matrix Bt has dimensions |G||X | × |G||U|, and
vector ct has dimensions |G||X |× 1. With this, we have

Xt+1 =AtXt +Btut + ct, t= 0, . . . T − 1.

We can then express the state Xt as11.

Xt =

( ∏
τ=t−1,t−2,...,k

Aτ

)
Xk +

t−1∑
τ=k

( ∏
i=t−1,t−2,...,τ+1

Ai

)
Bτuτ +

t−1∑
τ=k

( ∏
i=t−1,t−2,...,τ+1

Ai

)
cτ .

(EC.25)

It is now possible to express both the objective and the constraints linearly in the decisions ut.

EC.3.2. Constraint Coefficients

We can write each of the constraints (4) and (5) in the form

Lt ≤K(t), where Lt := γx
> ·Xt +γu

> ·ut, ∀ t∈ {k, k+ 1, . . . , T − 1}, (EC.26)

for some (time-invariant) γx,γu. Since Xt is linear in uk, . . . ,ut−1, to represent one such constraint
we just need to store the coefficients corresponding to all decision variables (i.e., uk, . . . ,uT−1) and
the free terms/constants that appear in Lt.

In particular, in the LHS γx
> ·Xt +γu

> ·ut of such a constraint, the decision uτ , for k≤ τ ≤ t,
will have coefficients{

γu
>, for τ = t

γx
>
(∏

i=t−1,t−2,...,τ+1Ai

)
Bτ , for τ = t− 1, t− 2, . . . , k

(EC.27)

To make calculations efficient, we note that the coefficients can be obtained recursively as in the
CalculateConstraintCoefficients function defined in Algorithm 1.

EC.3.3. Objective Coefficients

Up to constants, the objective in (13) can be written as

T∑
t=k

(
dt
>Xt +et

>ut
)

(EC.29)
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Algorithm 1 CalculateConstraintCoefficients

Initialization: X̄k :=Xk

for t= k, k+ 1, . . . , T − 1 do
Calculate the constants in Lt as: γx

>X̄t

Set X̄t+1 :=AtX̄t + ct
Calculate coefficients for uτ in Lt as:{

γu
>, for τ = t

γx
>Āt,τBτ , for τ = t− 1, t− 2, . . . , k

where

Āt,τ :=

{
I, for τ = t− 1

Āt,τ+1Aτ+1, for τ = t− 2, t− 3, . . . , k.
(EC.28)

end for
return Coefficients for uτ in Lt in each t= k, k+ 1, . . . , T − 1.

with

dt
> =

{
û>t M +γ>, if t < T

η>, if t= T,
et
> =

{
X̂>t M

>, if t < T

0, if t= T .
(EC.30)

In (13) the decisions ut, for k≤ t≤ T − 1, will have objective coefficients:

X̂>t M
>+

T−1∑
τ=t+1

(
û>τM +γ>

)( ∏
i=τ−1,τ−2,...,t+1

Ai

)
Bt +η>

( ∏
i=T−1,T−2,...,t+1

Ai

)
Bt. (EC.31)

This allows calculating the coefficients recursively, just as we did for the constraints. The
detailed function CalculateObjectiveCoefficients is defined in Algorithm 2.

Calculation of M ,γ and η. Expanding the objective (8), we have:

V−
T−1∑
t=0

∑
g∈G

(
vg (`(t)) · (Sg(t) +Eg(t) + Ig(t) +Rg(t)) + vg(1) ·Rq

g(t)
)

+
∑
g∈G

(
vlife
g +χ

)
·Dg(T ).

From this equation and the definitions of vg (·) in Appendix (EC.2) above, we can write M (where
the rows are indexed by the controls and the columns indexed by the compartments) as

M [`work
g , Sg] =M [`work

g ,Eg] =M [`work
g , Ig] =M [`work

g ,Rg] =

{
−wgνwork, if g = 10-19, . . ., 60-69 y.o.

0, otherwise.

M [`ah, Sg] =M [`ah,Eg] =M [`ah, Ig] =M [`ah,Rg]

=

{
−wgνother activities

3|G| , if g = 10-19, . . ., 60-69 y.o., h∈ G, a∈ {transport, leisure,other}
0, otherwise.

M [`school
g , Sg] =M [`school

g ,Eg] =M [`school
g , Ig] =M [`school

g ,Rg] =

{
−θfgδgvemployment

20-29 y.o (1), if g = 0-9, 10-19 y.o.

0, otherwise.

M [·, ·] = 0, otherwise.
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Algorithm 2 CalculateObjectiveCoefficients

Initialization: X̄k :=Xk

for t= k, k+ 1, . . . , T − 1 do
Calculate coefficients for uτ in the period t summand of (EC.29) as:{

et
>, for τ = t

dt
>Āt,τBτ , for τ = t− 1, t− 2, . . . , k

(EC.32)

where

Āt,τ :=

{
I, for τ = t− 1

Āt,τ+1Aτ+1, for τ = t− 2, t− 3, . . . , k.
(EC.33)

end for

for t= T do
Calculate coefficients for uτ in the period T summand of (EC.29) as:

dT
>ĀT,τBτ , for τ = T − 1, T − 2, . . . , k (EC.34)

where

ĀT,τ :=

{
I, for τ = T − 1

ĀT,τ+1Aτ+1, for τ = T − 2, T − 3, . . . , k.
(EC.35)

end for

Sum up the terms attributed to a common uτ :

eτ
>+

T∑
t=τ+1

dt
>Āt,τBτ . (EC.36)

return Coefficients for uτ for each τ = k, k+ 1, . . . , T − 1

Similarly, we can write γ (indexed by the compartments for each group) as

γ[Sg] = γ[Eg] = γ[Ig] = γ[Rg] =

{
−wgνfixed, if g = 10-19, . . ., 60-69 y.o.

0, otherwise.
(EC.37)

γ[Rq
g] =−vg(1), for g ∈ G (EC.38)

γ[·] = 0, otherwise. (EC.39)

Finally, η (indexed by the compartments for each group) is

η=

 0, · · · ,0, (vlife
g +χ)︸ ︷︷ ︸

compartments of group g

,0, · · ·


>

g∈G

,

where the only non-zeros are in the indices corresponding to compartment Dg of each group g.

EC.3.4. Specifics of the Iterative Linearization-Optimization Procedure

Having defined functions CalculateConstraintCoefficients and CalculateObjectiveCo-
efficients, the Linearization-Optimization function which is the main subroutine of ROLD



ec8 e-companion to Author: Targeting for Pandemic Response

is described in Algorithm 3. This function builds the linear approximation for the remaining tra-
jectory of the system, and optimizes it via an LP in a trust region of an infinity-norm ε-ball around
the initial nominal control û

(k)
k:T−1. We denote that ε-ball by B∞ε (û

(k)
k:T−1).

Algorithm 3 Linearization-Optimization

Require: time period k, starting state Xk, nominal control initialization û
(k)
k:T−1

Calculate nominal trajectory X̂k:T from Xk and û
(k)
k:T−1

Run CalculateObjectiveCoefficients and CalculateConstraintCoefficients to
compute linear coefficients of decisions ut, t= k, . . . , T − 1
Solve resulting linear program with additional trust region constraints uk:T−1 ∈B∞ε (û

(k)
k:T−1) to

obtain controls ζk:T−1

return ζk:T−1.

The full ROLD procedure is given in Algorithm 4. Within each period k, ROLD calls the
Linearization-Optimization function iteratively up to a termination condition, using the out-
put control to initialize the nominal control and the trust region for the next call of the function.
This still requires to choose an initialization of the k= 0 nominal control û

(0)
0:T−1; in our experiments

we initialize this with a heuristic solution generated via a gradient method.
For the termination condition, we combine a fixed upper bound on the number of iterations with a

condition that we do not repeat the control sequences produced by Linearization-Optimization,
in order to avoid cycles. The fixed upper bound on the number of iterations is set so as to ensure
that for each k, every confinement decision in uk:T−1 can be changed to any value in [0,1] with
ε-length steps, i.e., the upper bound is at least d 1

ε
e. We further multiply the allowed number of

iterations by a multiple mult≥ 1, fixing the upper bound to be multd 1
ε
e.

We experimented with different values of ε between 0.01 and 0.5 and values of mult between 1
and 5. As expected, lower values of ε resulted in a more stable and higher performing heuristic.
Higher values of mult improved the heuristic only up to around mult= 2, after which point the
non-cycling termination condition was triggered almost always. On the other hand, reducing ε
had a significant impact on the run-time of the linearization algorithm. We chose the combination
of ε and mult that gave us the best trade-off between the quality of the solution and the total
run-time. In particular, for all the runs presented we take ε= 0.05 and mult= 2, resulting in an
upper bound of 40 runs for the inner loop.

EC.3.5. Initialization for ROLD

In this subsection we flesh out the details for the nominal control initialization û
(0)
0:T−1. Our imple-

mentation of the initialization varies depending on the ROLD variant (i.e., the level of targeting):
• ROLD NO-TARGET: ROLD is initialized at a solution of a gradient descent method that is

constrained to have the same activity levels across all age groups and activities, which can vary
through time.

• ROLD AGE: A gradient descent method that is constrained to have the same activity levels
across all activities for a given age group (and the activity levels are allowed to vary through time)
is initialized at the ROLD NO-TARGET solution. Then ROLD is initialized at the solution of the
gradient descent method.

• ROLD ACT: A gradient descent method that is constrained to have the same activity levels
across all age groups in a given activity (and the activity levels are allowed to vary through time)
is initialized at the ROLD NO-TARGET solution. Then ROLD is initialized at the solution of the
gradient descent method.

• ROLD AGE-ACT: We keep the best solution out of:
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Algorithm 4 ROLD

Require: initial state X0 and initial nominal control û
(0)
0:T−1

for k= 0, . . . , T − 1 do
i := 0 and u

(k,0)
k:T−1 := û

(k)
k:T−1

while i≤multd 1
ε
e and u

(k,i)
k:T−1 6=u

(k,j)
k:T−1, ∀0≤ j < i do

u
(k,i+1)
k:T−1 =Linearization-Optimization(k,Xk,u

(k,i)
k:T−1)

i= i+ 1
end while
Set u

∗,(k)
k:T−1 = arg min

uk:T−1∈
{
u

(k,0)
k:T−1

,...,u
(k,i−1)
k:T−1

}Total Loss(u∗0:k−1,uk:T−1)

Set the nominal control sequence to û
(k+1)
k+1:T−1 =u

∗,(k)
k+1:T−1

Set u∗k =u
∗,(k)
k and update the system state:

Xk+1 =Xk +Fk (Xk,u
∗
k) . (EC.40)

end for

(i) A gradient descent method that can vary activity levels across activities, age groups, and
time is initialized at the ROLD AGE solution. Then ROLD is initialized at the solution of the
gradient descent method.

(ii) A gradient descent method that can vary activity levels across activities, age groups, and
time is initialized at the ROLD ACT solution. Then ROLD is initialized at the solution of the
gradient descent method.

EC.4. Details on Parametrization and Calibration of the Model for
Île-de-France

EC.4.1. Basic SEIR Model Parameters

The SEIR model parameters that are constant across age groups are summarized in Table EC.1.
The age-group specific parameters are reported in Table EC.2. We start with the param-
eters as reported in Salje et al. (2020)12., and then we allow the values of parameters{
β,λ−1

H , λ−1
ICU ,{pICUg }g∈G,{pDg }g∈G

}
to change through time so as to model changes in how hospitals

manage COVID-19 patients and changes in mandates for using masks and other measures that
reduce transmission (details are presented in Section EC.4.2).

For R0 and λH , the reported uncertainty ranges are 95% confidence intervals. For σ−1 (i.e., the
mean stay in compartment E), the uncertainty range is calculated as 4± 0.8 · 0.6 days, where 0.6
days is half the width of the 95% confidence interval for the incubation period reported in Bi et al.
(2020), and 0.8 accounts for the fact that the stay in compartment E is 4/5 of the mean incubation
time in Salje et al. (2020). For µ−1 (i.e., the mean stay in an infectious state), the uncertainty range
is calculated as 4± 0.43, where 0.43 is half the width of the 95% confidence interval for the serial
interval reported by Du et al. (2020).13. For the average stay in the ICU, we add to the mean stay
of 20.46 days for Île-de-France, another 1.5 day, which is the mean time spent in hospital prior to
ICU admission (Salje et al. 2020).

Calculating the transmission rate β from R0. We obtain β by linearizing the dynamics for
Eg, Ig around a point where Sh ≈Nh, Ih ≈ 0, ∀h. More precisely, we have:

∂Eg
∂t
≈ β(t)

∑
h

cghIh(t)−σEg(t)

∂Ig
∂t
≈ σEg(t).
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Table EC.1 SEIR model parameters

Variable Description
Value

Reference
[Uncertainty Range]

R0 Basic reproduction number
2.9

Salje et al. (2020)
[2.8 - 2.99]

σ−1 Latency period
4.0 days

Salje et al. (2020), Bi et al. (2020)
[3.52 - 4.48]

µ−1 Infectious period
4.0 days

Salje et al. (2020), Du et al. (2020)
[3.57 - 4.43]

(λH)−1 Average time spent in Hospital
14.94 days

Salje et al. (2020)
[14.55 - 15.32]

(λICU)−1 Average time spent in ICU
21.96 days

Salje et al. (2020)
[21.38 - 22.6]

Table EC.2 Age-group specific SEIR model probability parameters

Age group g pss,g pICUg pHg pDg
(y.o.) Prob. of severe symptoms Prob. of ICU Prob. of Hospital Prob. of Death

given infection given infection given infection given severe symptoms

0-9
0.002 0.000444 0.001556 0.006

[0.001 - 0.003] [0.000192 - 0.000765] [0.000235 - 0.002808] [0.003 - 0.013]

10-19
0.002 0.000444 0.001556 0.006

[0.001 - 0.003] [0.000192 - 0.000765] [0.000235 - 0.002808] [0.003 - 0.013]

20-29
0.006 0.00069 0.00531 0.011

[0.004 - 0.01] [0.000404 - 0.00132] [0.00268 - 0.009596] [0.007 - 0.016]

30-39
0.013 0.002067 0.010933 0.019

[0.008 - 0.02] [0.001168 - 0.00346] [0.00454 - 0.018832] [0.015 - 0.023]

40-49
0.017 0.003774 0.013226 0.033

[0.01 - 0.027] [0.0021 - 0.006345] [0.003655 - 0.0249] [0.029 - 0.037]

50-59
0.035 0.00966 0.02534 0.065

[0.021 - 0.054] [0.005565 - 0.015498] [0.005502 - 0.048435] [0.06 - 0.07]

60-69
0.071 0.021868 0.049132 0.126

[0.042 - 0.11] [0.012516 - 0.03498] [0.00702 - 0.097484] [0.12 - 0.132]

70-79
0.113 0.028137 0.084863 0.21

[0.067 - 0.175] [0.016147 - 0.04515] [0.02185 - 0.158853] [0.203 - 0.218]

80+
0.32 0.01792 0.30208 0.316

[0.19 - 0.494] [0.01007 - 0.029146] [0.160854 - 0.48393] [0.309 - 0.324]

Then, with Y (t) :=
[
E1(t),E2(t), . . . ,E|G|, I1(t), . . . , I|G|

]T
, we can write Ẏ (t) = (Φ+Λ)Y (t), where

Φ = β ·
[

0 [cgh]g,h∈G
0 0

]
(EC.41)

and

Λ =

[
−diag(σ) 0
diag(σ) −diag(µ)

]
. (EC.42)
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Then R0 can be identified as the spectral radius (i.e., the largest absolute value of the eigenvalues)
of the matrix −ΦΛ−1 (Diekmann et al. 2010, Perasso 2018). Since the eigenvalues of a matrix β ·A
are simply β multiples of the eigenvalues of A, we can therefore determine β as R0 divided by the
spectral radius of the matrix (−Φ/β)Λ−1.

EC.4.2. Epidemiological Model Parameter Fitting Using Health Outcomes and Mobility Data

We use data on health outcomes from the French Public Health Agency (French Government 2020),
as well as Google mobility data (Google 2020), to estimate the unknown parameters in our model.
The data on health outcomes includes counts for individuals who are in the hospital, in the ICU,
and who have died, by age group, and is maintained and updated daily by the French Public Health
Agency (Santé publique France). The Google mobility data reports changes in activity at different
places compared to a baseline, and is calculated using aggregate and anonymized data. For both
health outcomes and mobility, we use data specific to the Île-de-France region.

The calibration exercise has two purposes: (a) to further refine the SEIR parameters reported in
the literature to the data observed in Île-de-France and (b) to estimate our other parameters for
which we do not have existing references. We then use the values of the estimated parameters in
our experiments and simulations.

We first describe the set of parameters to be estimated, which we denote by P.
• Date of patient zero. We assume that the SEIR process starts with an infected individual of

the 40-49 y.o. age group (Mohammad 2020). We wish to estimate the date when this infection
occurs.

• Epidemiological parameters. We use the epidemiological parameters of Salje et al. (2020) to
initialize the SEIR model. We allow these parameters to change in time in order to model changes
in the way hospitals manage COVID-19 patients, as well as changes in mandates for using masks
and other measures that reduce transmission. We assume that on date d, each parameter from the
set S =

{
β,λ−1

H , λ−1
ICU ,{pICUg }g∈G,{pDg }g∈G

}
changes with respect to its initial value (as reported in

Section EC.4.1), according to the relationship

safter d =ms · sbefore d, s∈ S, (EC.43)

where ms is a multiplier pertaining to parameter s. We assume the same multiplier mpICUg
for all

groups g ∈ G, and similarly for mpDg
. We seek to determine the date of change d as well as the

multipliers ms, s∈ S.
• Confinement patterns. To estimate activity levels for the activities in our social mixing model,

we use Google mobility data (Google 2020). The mobility data reports changes of activity (visits
and length of stay) for each day, compared to a baseline value. The baseline used corresponds to
the median value for the corresponding day of the week, during the five-week period January 3 -
February 6 2020. We fix the home activity level to be equal to 1, throughout time. We estimate
the level of the other activities using the corresponding activities from the Google mobility data,
as shown in Table EC.3.

Table EC.3 Mapping between the activities in our model and the activities in the Google mobility data

Activity in Our Model Activity in Google Mobility Data

work Workplaces

transport Transit stations

leisure Retail & recreation

other αother·Retail & recreation +(1−αother)· Grocery & pharmacy
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What remains to be estimated in the calibration is the weight parameter αother, as well as the
school activity levels. We calibrate the level of schooling activity for four different time periods until
October 21 2020. These periods are chosen to reflect (i) the dates when the French government
closed down schools, and (ii) the French school calendar and summer recess.

• Social mixing parameter. To reduce the number of parameters to be calibrated, we simplify
our mixing model in (1) by constraining α1 = α2. We seek to determine this mixing parameter.

We next describe the details of the fitting procedure that we set up in order to retrieve an optimal
parameter fitting. The mixing dynamics of the SEIR model are driven by the vector of activity
levels `g of each age group (as described in Section 3.2). Data on activity levels can be noisy; we
model this uncertainty by assuming the vector of activity levels is a random vector, distributed as
follows:

˜̀
g(t) = ¯̀

g(t)(1 +Z(t)), Z(t)∼N(0, σ2I), σ= 10−2. (EC.44)

The value ¯̀
g(t) is obtained from the Google activity data at time t; this dataset does not differ-

entiate activity by age, so ¯̀
g(t) = ¯̀

h(t) for all g,h ∈ G; in other words, all groups are assigned the
same activity level. Recall that Hg(t), ICUg(t),Dg(t) denote the hospital utilization, ICU utiliza-
tion and cumulative number of deaths according to the SEIR model, respectively. We denote these
quantities with HPg (t, ˜̀), ICUPg (t, ˜̀),DPg (t, ˜̀) to emphasize the dependence of the SEIR process on

parameters P and the vector of activity levels ˜̀ := [ ˜̀g]g∈G. We aggregate these quantities over all
age groups:

HP(t, ˜̀) :=
∑
g∈G

HPg (t, ˜̀) (EC.45)

ICUP(t, ˜̀) :=
∑
g∈G

ICUPg (t, ˜̀) (EC.46)

DP(t, ˜̀) :=
∑
g∈G

DPg (t, ˜̀) (EC.47)

Denote by Hobs(t), ICU obs(t),Dobs(t) the general ward hospital beds utilization, ICU beds utiliza-
tion, and cumulative deaths, respectively, at time t, as observed in the real data for Île-de-France
from the French Public Health Agency (French Government 2020). We calculate the relative fitting
error of the SEIR model at time t for each of these three quantities as

EPH(t, ˜̀) :=

∣∣∣∣∣HP(t, ˜̀)−Hobs(t)

Hobs(t)

∣∣∣∣∣ (EC.48)

EPICU(t, ˜̀) :=

∣∣∣∣∣ICUP(t, ˜̀)− ICU obs(t)

ICU obs(t)

∣∣∣∣∣ (EC.49)

EPD(t, ˜̀) :=

∣∣∣∣∣DP(t, ˜̀)−Dobs(t)

Dobs(t)

∣∣∣∣∣ . (EC.50)

We define the total expected fitting error as a sum of these errors over different time intervals:

EP :=E ˜̀

[ ∑
t∈peak H

wpeak · EPH(t, ˜̀) +
∑

t∈peak ICU

wpeak · EPICU(t, ˜̀) +
∑

t∈peak D

wpeak · EPD(t, ˜̀)

+
∑
t∈tail

(
wtail
H · EPH(t, ˜̀) +wtail

ICU · EPICU(t, ˜̀) +wtail
D · EPD(t, ˜̀)

)
+
∑
t∈main

(
(1−wtail

H ) · EPH(t, ˜̀) + (1−wtail
ICU) · EPICU(t, ˜̀) + (1−wtail

D ) · EPD(t, ˜̀)
)]

,

(EC.51)
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where the expectation is taken with respect to random vector ˜̀, and where the time intervals are
defined in Table EC.4 and comprise the entire period between March 17 2020 and October 21
2020. Our approach penalizes the errors at the peak times for hospital beds utilization, ICU beds
utilization, and deaths; it also penalizes errors over the last 14 days of the considered period, to
ensure an accurate fit at the end of the calibration horizon. We use different weights to account for
the different errors. We use wpeak = 1/6 to account for the relatively smaller period of the peaks.
We use wtail

H =wtail
D = 1/3 and wtail

ICU = 2/3, with a higher weight for ICU beds utilization so as to
ensure low error in the tail predictions of ICU utilization, as ICU beds utilization towards the tail
of the calibration window plays an important role in the dynamics of the model right after the
calibration window.

Table EC.4 Time intervals used in the calibration

Label Period

main
March 17 - October 7 2020

(except for April 8, April 14, May 14)

peak ICU April 8 2020

peak H April 14 2020

peak D May 14 2020

tail October 8 - 21 2020

We seek to determine the set of parameters P that minimize EP in (EC.51). We approximate
the expectation in (EC.51) through a Monte Carlo sample-average approximation, using 100 sam-
ples. The set P contains both discrete and continuous parameters. To minimize EP , we first do
a grid search over all possible combinations for the discrete parameters, and then for each such
combination, we perform a gradient descent procedure over the space of the continuous parame-
ters. Each parameter is optimized within an allowed range, which is informed from the context of
Île-de-France in 2020. We used a wide allowed range if we had no information on what could be
reasonable values for a given parameter.

Our calibration procedure yields the parameter fitting summarized in Table EC.5. We compare
the fitted values of the SEIR model with the values reported by the French Public Health Agency
in Figure 2. Figure EC.1 presents the results from the out-of-sample model validation analysis.

EC.4.3. Economic Model Parameter Fitting

We obtain data on population, employment, and wages from the French National Institute of
Statistics and Economic Studies (Institut national de la statistique et des études économiques —
INSEE). Where relevant, we discount all cash flows at a 3% annualized rate. We set the retirement
age to be 65 (i.e., 64 is the last working year of age.) We first obtain the initial population data
Ng(0) for each age group in Île-de-France at the end of 2019 from INSEE (2020).

Estimation of wg. Recall that wg in (EC.18) corresponds to the employment value for a member
of group g, under normal conditions. To estimate wg, we use two datasets from INSEE:

• Yearly full time equivalent (FTE)14. wages and employed population count for Île-de-France
in 2016, broken up into the age groups “under 26 years old”, “26 to 49 years old” and “more than
50 years old” (INSEE 2016b).

• FTE employment rates across the entire economy for the fourth quarter of 2019, bucketed by
age groups “15 to 24 years old”, “25 to 49 years old”, “50 to 64 years old”, and “55 to 64 years
old” (INSEE 2019).
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Table EC.5 Calibration: fitted epidemiological and economic parameters and allowed estimation ranges

Parameter Estimated Value Allowed range

Date of patient zero Jan 1 2020 Dec 8 2019 - Jan 27 2020

Date d when epidemiological parameters change Apr 16 2020 Mar 1 2020 - Apr 30 2020

Multiplier mβ 0.60 0.50-2.00

Multiplier mpICUg
1.66 0.50-2.00

Multiplier mpDg
1.13 0.50-2.00

Multiplier mλH 1.50 0.50-2.00

Multiplier mλICU 2.00 0.50-2.00

Weight for activities αother 0.96 0.00-1.00

School activity `school Mar 17 - May 10 2020 0.00 0.00-0.10

School activity `school May 11 - Jun 30 2020 0.00 0.00-1.00

School activity `school Jul 1 - Aug 31 2020 0.20 0.00-0.20

School activity `school Sep 1 - Oct 21 2020 1.00 0.50-1.00

Social mixing α 0.39 0.10-2.00

Sensitivity of econ. value νwork 0.50

Sensitivity of econ. value νfixed 0.47

Since we do not have a consolidated data source for economic data split by our exact age group
definitions, we use the above datasets to interpolate values for wg. At a high level, we derive wage
curves across age ranges.

We next explain the general procedure, as well as the additional assumptions we have made for
the interpolation. First, for the construction of wage curve by age bucket:

• We assume that the national level employment rates from INSEE (2019) are equal to those
of the Île-de-France region. Because the age bucketing for our age groups is finer than the age
bucketing in the data, we use interpolation. Specifically, we fit a piece-wise linear model (consisting
of three pieces) to the four employment rates reported for the “15 to 24 years old”, “25 to 49 years
old”, “50 to 64 years old”, and “55 to 64 years old” groups. We take the midpoint of the age group
as the x value of the datapoint; for example, for “50 to 64 years old” we use a midpoint of 57.5.

With this model, we can infer an employment rate for any arbitrary age and construct an
employment rate curve.

• We perform a similar fitting procedure for the age group wage information from INSEE
(2016b); since the wage progression by age is much smoother, we use simple linear regression to
construct a wage curve for each one of our age buckets.

• The previous wage curve only accounts for the employed population, whereas our age groups
count the entire population. We thus combine the wage curve with employment rate and population
data to arrive at a wage number blended across an entire age group’s population.

When doing this, we treat the 10-19 y.o. and 60-69 y.o. age groups specially by assuming the
employment rates are reported only with respect to the work-eligible population in that bucket
(15-19 and 60-64 year olds, respectively). We also set the work-eligible population for the 0-9,
70-79, and 80+ age buckets to 0. The formula we use is

average wageg = employed average wageg×employment rateg× fraction work eligible populationg.
(EC.52)
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(a) Calibrate until April 26 2020; validate until May 10 2020

Jan Feb Mar Apr May Jun Jul
2020

0

2000

4000

6000

8000

10000

Ho
sp

ita
l B

ed
s U

til
iza

tio
n SEIR Prediction

Reported
Start Validation

Jan Feb Mar Apr May Jun Jul
2020

0

500

1000

1500

2000

2500
IC

U 
Be

ds
 U

til
iza

tio
n

SEIR Prediction
Reported
Start Validation

Jan Feb Mar Apr May Jun Jul
2020

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e 

De
at

hs

SEIR Prediction
Reported
Start Validation

(b) Calibrate until June 16 2020; validate until June 30 2020
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(c) Calibrate until August 17 2020; validate until August 31 2020
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(d) Calibrate until October 7 2020; validate until October 21 2020

Figure EC.1 Out-of-sample predictions of the fitted SEIR model vs. reported values by the French Public Health
Agency for hospital beds utilization (left), ICU beds utilization (middle) and cumulative deaths
(right). For each of four dates t ((a): May 10 2020; (b): June 30 2020; (c): August 31 2020; (d):
October 21 2020) we calibrate the SEIR model using data up until day t− 14; and then run the
SEIR model up to day t. The dashed line indicates the start of the out-of-sample validation (i.e.,
t− 13).
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• The interpolations we use introduce errors: in particular, if we aggregate the wages inferred by
our constructed curve across the entire population, we overestimate the real total wages by 5.12%.
We scale all wages average wageg proportionally so as to retrieve the real total wage amount wg.

Table EC.6 summarizes the year-based employment contribution parameters per age group.
We note that when using them in the objective of the optimization problem, we divide these
year-based values by 365, in order to capture employment value on a daily basis.

Table EC.6 Year-based economic value parameters under normal activity, per age group (in e)

Age Group g (y.o.) wg × 365 (e)

0-9 0.00

10-19 2084.79

20-29 11743.20

30-39 25799.29

40-49 31746.68

50-59 32573.79

60-69 12640.83

70-79 0.00

80+ 0.00

Estimation of νwork, νother activities, νfixed. We move on to the estimation of parameters
νwork, νother activities, νfixed in (EC.18). These measure the sensitivity of economic value to the confine-
ment pattern `(t). We estimate them from data on lost economic output during the first lockdown
phase employed in Île-de-France, and in particular using the month of April 2020. We break up
the approach into a few steps:

• We use survey data of French managers regarding business activity during the lockdown start-
ing March 17 2020 from the Bank of France. This is sentiment data where managers are asked
to compare current business conditions to normal conditions for the same relevant time period
(Banque de France 2020a,b). These data are reported by industry, and we aggregate them into a
single number weighting by industry size. We use FTE wages and employed population count for
the Île-de-France region in 2016 (INSEE 2016a) to figure out the appropriate weights to use in the
aggregation. We then use these monthly readings as proxies for the economic activity level due to
confinements in the month of April 2020, as compared to normal activity. The economic activity
level for the month of April is 58.51%.

• A requirement for our estimation are the precise levels of confinement in April 2020. We retrieve
these from Google mobility data (Google 2020), as explained in Section EC.4.2. To simplify the
estimation, we set νother activities = 0 and then determine parameters νwork, νfixed solving the system
of equations

νwork + νfixed = 1 (EC.53)

νwork`work
April + νfixed = 0.5851, (EC.54)

where `work
April corresponds to the average value of `work(t) through the month of April 2020. In our

experiments, we also test our algorithm in alternative scenarios where we set νother activities > 0, keep
the value for νfixed from the system (EC.53)-(EC.54), and adjust νwork = 1− νother activities − νfixed.
The specific values we test are νother activities ∈ {0,0.1,0.2}.
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EC.5. Benchmark Policies

We compare ROLD to several simpler classes of policies drawing inspiration by real life confinement
management rules:

• ICU admissions trigger policy — ICU-t. This class of policies is similar in spirit to the
trigger rule proposed by Duque et al. (2020) for the Austin metropolitan area. This rule places
all age groups and activities (except home) at a strict level of confinement when the average
seven-day hospital admissions (i.e., inflow of patients admitted into the hospital due to COVID-19
complications) exceeds a pre-determined threshold, and then changes the confinement to a relaxed
level when the average seven-day hospital admissions and the hospital utilization rate drop below
pre-determined thresholds.

Since Duque et al. (2020) does not differentiate between hospital and ICU beds, we define our
policy class on ICU admissions and utilization instead of hospitalizations. Specifically, the ICU
admissions trigger policy is defined as in Algorithm 5.

Algorithm 5 ICU Admissions Trigger Policy — ICU-t

Require: parameters `strict, `relaxed, ρadmissions, ρutilization

Initialize `ag(0) = `relaxed for all a∈ {work, school, transport, leisure,other}, g ∈ G
for t∈ {0, . . . , T − 1}, g ∈ G do

if 7 day average ICU admissions >ρadmissions then
Set `ag(t) = `strict for all a∈ {work, school, transport, leisure,other}, g ∈ G

else if (7 day average ICU admissions ≤ ρadmissions) AND
(∑

g ICUg(t)/K
ICU(t)≤ ρutilization

)
then

Set `ag(t) = `relaxed for all a∈ {work, school, transport, leisure,other}, g ∈ G
else

Set `ag(t) = `ag(t− 1) for all a∈ {work, school, transport, leisure,other}, g ∈ G
end if

end for

We optimize over the parameters `strict, `relaxed, ρadmissions and ρutilization via grid search with the
goal of minimizing the objective in (8) corresponding to the total economic and death loss due to
the pandemic, and we report the performance of the best policy.

• Hybrid Trigger Policy — Hybrid-t. This policy resembles the rule used in France for
declaring a region in “maximum alert”15. (Lehot and Borgne 2020). Like the previous policy,
this policy also switches between a (uniform) strict and a more relaxed confinement level, but
the trigger condition combines ICU utilization with the rate of new infections in the population.
Specifically, the policy switches to strict confinement if the average seven-day incidence rate in
the population, defined16. as

∑
t−6≤τ≤t

∑
g new infectionsg(τ)/

∑
gNg(0), is greater than a thresh-

old ρincidence, and the incidence rate in age groups corresponding to the population that is 60
y.o. and above,

∑
t−6≤τ≤t

∑
g≥60 y.o. new infectionsg(τ)/

∑
g≥60 y.o.Ng(0), is greater than a threshold

ρincidence 60+, and the ICU utilization rate is greater than a threshold ρutilization. We optimize over
all parameters `strict, `relaxed, ρincidence, ρincidence 60+ and ρutilization with the goal of minimizing the
total loss objective in (8), and we report the performance of the best policy.

This is the Hybrid-t AND policy, and it is described in Algorithm 6. We also test a stricter
version of this policy that takes the logical or of the three conditions (Hybrid-t OR), instead of
taking the and, as the trigger for setting the strict confinement level.

• Fully open — FO. This corresponds to the normal conditions where `ag(t) = 1 for all a ∈
{home,work, school, transport, leisure,other}, g ∈ G and t∈ {0, . . . , T − 1}.

• Full confinement — FC. In this policy, all activities except home are fully restricted. That
is, we set `ag(t) = 0 for all a ∈ {work, school, transport, leisure,other}, g ∈ G, t ∈ {0, . . . , T − 1}, and
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Algorithm 6 Hybrid Trigger Policy — Hybrid-t AND

Require: parameters `strict, `relaxed, ρincidence, ρincidence 60+, ρutilization

Initialize `ag(0) = `relaxed for all a∈ {work, school, transport, leisure,other}, g ∈ G
for t∈ {0, . . . , T − 1}, g ∈ G do

if
(∑

t−6≤τ≤t
∑

g new infectionsg(τ)/
∑

gNg(0)>ρincidence

)
AND(∑

t−6≤τ≤t
∑

g≥60y.o. new infectionsg(τ)/
∑

g≥60y.o.Ng(0)>ρincidence 60+

)
AND(∑

g ICUg(t)/K
ICU(t)>ρutilization

)
then

Set `ag(t) = `strict for all a∈ {work, school, transport, leisure,other}, g ∈ G
else

Set `ag(t) = `relaxed for all a∈ {work, school, transport, leisure,other}, g ∈ G
end if

end for

`home
g (t) = 1 for all g ∈ G and t∈ {0, . . . , T − 1}.

EC.6. Additional Results
EC.6.1. Robustness Analyses

We analyze additional problem instances by changing the value of each of 13 estimated parameters
within a sensitivity range, as shown in Table EC.7. For each parameter, we sample 40 values
uniformly at random from a specified sensitivity range. In each problem instance, one parameter
is changed from its estimated value, for a total of 13× 40 = 520 problem instances.

Table EC.7 Robustness analysis: parameters and sensitivity analysis ranges

Parameter Estimated Value Sensitivity Range

Multiplier mβ 0.60 0.45-0.75

Multiplier mpICUg
1.66 1.51-1.81

Multiplier mpDg
1.13 0.98-1.28

Multiplier mλH 1.50 1.35-1.65

Multiplier mλICU 2.00 1.85-2.15

Weight for activities αother 0.96 0.76-1.00

School activity `school Mar 17 - May 10 2020 0.00 0.00-0.20

School activity `school May 11 - Jun 30 2020 0.00 0.00-0.20

School activity `school Jul 1 - Aug 31 2020 0.20 0.00-0.40

School activity `school Sep 1 - Oct 21 2020 1.00 0.80-1.00

Social mixing α 0.39 0.19-0.59

Work activity `work
April April 2020 0.213 0.113-0.313

Economic activity level April 2020 58.51% 48.51%-68.51%

Figure EC.2 shows robustness results for seven values of the economic cost of death χ:
[0,10,15,25,50,100,150]× the annual GDP per capita in France. The shown boxplots summarize
results over the 520 problem instances, for each value of χ. These results reinforce our findings
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from Section 6 on the gains of dual targeting, as well as the observation that dual targeting unlocks
complementarities which may not be available under targeting age groups or activities separately.
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Figure EC.2 Robustness analyses showing the superiority of ROLD AGE-ACT over ROLD policies with less
granular targeting, and the super-additive improvements of ROLD AGE-ACT over the sum of the
improvements of ROLD AGE and ROLD ACT, for different values for the cost of death χ, over
a wide set of problem instances. All improvements are with respect to ROLD NO-TARGET. For
each value of χ, the boxplots summarize results over 520 different problem instances.

EC.6.2. Can Dual Targeting Increase Average Activity Levels for Each Age Group?

For each ROLD policy, we calculate the time-average activity level of each age group, averaged over
the activities relevant to that age group (listed in Table EC.8), and weighting different activities
by the respective participation rates. We split the 24-hour day in 48 slots of 30 minutes each,
indexed τ = 1, . . . ,48, and let Rag(τ) denote the participation rate of age group g in activity a during
time slot τ of a generic day (so that

∑
a∈ARag(τ) = 1,∀τ, g). We retrieve the participation rates

from time-use survey data we obtained from the French National Archive of Data from Official
Statistics (ADISP, INSEE 2010). We detail our procedure for estimating participation rates in
Appendix EC.8.1. Then, for group 0-9 y.o., the time-average activity level is defined as

1

T ′

T ′∑
t=1

∑
a∈{school,leisure,transport,other}

∑
τ Rag(τ)∑

a′∈{school,leisure,transport,other}
∑

τ Ra
′
g (τ)

`ag(t), if g = 0-9 y.o. (EC.55)

and similarly for other age groups.

EC.6.3. Additional Details for How Gains Arise from Dual Targeting

Figure EC.3 shows the activity levels of different (age group, activity) pairs, with pairs divided
into three buckets (high, medium, low) in terms of their econ-to-contacts-ratio. The ROLD policy
tends to enforce stricter confinements in earlier periods and subsequently relaxes these through
time.

Figure EC.4 visualizes the optimized confinement policy for the value χ= 60×, which is in the
mid-range of estimates used in the economics literature on COVID-19 (Alvarez et al. 2020) and is
representative of the overall behavior we observe across all experiments. Groups 20-69 y.o. remain
more open in work but face confinement in leisure for up to the first ten weeks; on the contrary,
the 10-19 y.o. group is confined in work for a long period while remaining open in leisure, and the
70+ y.o. groups also remain open in leisure.
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Table EC.8 Relevant activities for each age group, excluding home

Age Group g (y.o.) Relevant Activities

0-9 school, leisure, transport, other

10-19 school, work, leisure, transport, other

20-29 work, leisure, transport, other

30-39 work, leisure, transport, other

40-49 work, leisure, transport, other

50-59 work, leisure, transport, other

60-69 work, leisure, transport, other

70-79 leisure, transport, other

80+ leisure, transport, other
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Figure EC.3 The activity levels of optimized ROLD AGE-ACT policies for different (age group, activity) pairs,
bucketed in three equally-sized buckets according to their econ-to-contacts-ratio. The lines indicate
the mean for each bucket, where for each time t the mean is taken over the different values of the
cost of death χ and over the relevant (age group, activity) pairs.

EC.6.4. Additional Details for the Regression Decision Trees

To understand how the ROLD policies target confinements across different age groups and activi-
ties, we train an interpretable machine learning model – a regression decision tree – to predict the
optimal ROLD confinement in each activity as a function of several features.

To build a training set, we first create a larger set of problem instances built using a wide range
of problem parameters. We vary the following parameters: basic reproduction number R0, the
scaling of the group-specific probabilities pss,g of having severe symptoms conditioned on being in
state I , the social mixing parameter α, the cost of death χ, the ICU capacity KICU, the economic
model parameter νfixed, the ratio of economic model parameters νother activities/νwork, and the activity
weights w leisure,w transport,w other used in the model for vemployment

g in (EC.18). We create each instance
by drawing each of these parameters independently and uniformly at random from a range that is
specified in Table EC.9.

All resulting instances use an optimization horizon of T ′ = 90 days and change the confinement
decisions every 14 days. For each problem instance, we compute the optimal ROLD AGE-ACT,
ACT, and NO-TARGET activity levels, i.e., the decisions `ag(t) for g ∈ G, a∈A,0≤ t≤ T −1, which
we then use to simulate the SEIR dynamics and calculate all the corresponding values of the SEIR
states.
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Figure EC.4 The optimized ROLD AGE-ACT policy for a problem instance with a 90-day optimization horizon
starting on October 21, 2020, with 2900 ICU beds, and with cost of death χ= 60×. From top to
bottom, the seven panels depict the time evolution for the occupation of hospital and ICU beds,
the number of infectious individuals, the cumulative number of deaths in the population, and the
confinement policy imposed by ROLD in each age group and activity. In panels 3-7, the values
correspond to the activity levels allowed and are color-coded so that darker shades capture a stricter
confinement.

EC.6.4.1. Additional Details for the Regression Decision Trees for the ROLD AGE-
ACT Policy We create a training set of 5,524,785 samples — with one sample for every 14-
day period (i.e., for t = 0,14,28, etc.), each age group g, and each activity a relevant to that
age group — where we include several direct and derived features based on the parameter val-
ues characterizing the instance and the induced SEIR states, and a target corresponding to the
optimal ROLD AGE-ACT decision `ag(t). We consider both targeted features, by which we mean
features that differentiate on either group g or activity a,17. or on both, and non-targeted features
(Tables EC.10, EC.11). Some of the non-targeted features are allowed to depend on t.

Using this data as training set, we employ the CART algorithm (implemented in the scikit-
learn Python library) to train regression decision trees to predict the optimal ROLD AGE-ACT
confinement decisions across all activities and age groups as a function of the considered features,
using the traditional mean-squared-error (MSE) criterion as a goodness of fit metric. When using
k-fold cross-validation to assess the optimal depth of the tree, we noticed that the optimal depth
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Table EC.9 Parameter variation used for fitting trees. Each problem instance is defined by drawing each
parameter independently from the uniform distribution over the indicated range for that parameter.

Parameter Description Min Max Notes

R0 Basic reproduction number 1 8

severity-scaling Scales the probability of pss,g
for all groups g

0.1 3.125 Max value ensures pss,80+ = 1

α Social mixing parameter 0.16 1.16 Min/max values correspond resp.
to contacts dropping to 80% and
20% of their level

χ Cost of death 0 400 In multiples of GDP/capita

KICU ICU capacity 592 4175 Min(max) corresponds to the ICU
filling completely in 10 (60) days
from day 0 of the optimization
horizon, assuming a fully open pol-
icy

νfixed Economic model parameter 0.1 0.9

νother activities

νwork Ratio of economic model
parameters

0.01 0.36 The estimated ratio of 3/50 was
scaled up and down by a factor of
6

w leisure,w transport,w other Weights for econ. model for
vemployment
g in (EC.18)

- - Sample uniformly at random
from the simplex defined by
w leisure + w transport + w other =
1; w leisure,w transport,w other ≥ 0

Table EC.10 Targeted features used for fitting trees for ROLD AGE-ACT

Feature Name Description

g, a Age group, activity

pss,g Probability of having severe symptoms conditional on infection
for group g

pDg Probability of dying conditional on severe symptoms for group
g

vlife
g Lost wages for group g

Ng(t) Sg(t) +Eg(t) + Ig(t) +Rg(t)

econ-gradient(g, a, t) The gradient of the economic value with respect to the activity

level `ag(t) normalized by Ng(t), i.e.,
∂Economic Value(t)/∂`ag(t)

Ng(t)

contacts-given(g, a) The number of social contacts given to other groups by group g
in activity a, i.e.,

∑
h∈G C

a
h,g

econ-to-contacts-ratio(g, a, t) The ratio of econ-gradient(g, a, t) and contacts-given(g, a)

exceeded 10. As such, we decided to train a tree of depth four for interpretability purposes, and
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Table EC.11 Non-targeted features used for fitting trees for ROLD AGE-ACT

Feature Name Description

t Time period
R0 Basic reproduction number
contacts-elasticity The percentage drop in total contacts when activity levels drop by

50%. Equal to 1− 4−α, where α is the social mixing parameter.

χ Cost of death

KICU ICU capacity

R-perc(t) The percentage of the population estimated by the model to be in
the recovered state at time t, i.e.,

∑
g∈GRg(t)/[

∑
g∈GNg(t) +Rq

g(t)]

ICU-utilization(t) The percentage of ICU beds occupied at time t

infection-rate-new-
seven-day-avg(t)

The rate of new infections averaged over the last seven days, i.e.,
1
7

∑
τ∈[t−6,t]

∑
g∈G[σEg(τ)]/[

∑
g∈GNg(τ) +Rq

g(τ)]

infection-rate-new-
elderly-seven-day-avg(t)

The rate of new infections in elderly groups
averaged over the last seven days, i.e.,
1
7

∑
τ∈[t−6,t][

∑
g∈G :g≥60y.o. σEg(τ)]/[

∑
g∈G :g≥60y.o.Ng(τ) +Rq

g(τ)]

ICU-daily-admissions(t) New daily admissions into the ICU at time t, i.e., the sum of the
second and third term in the right-hand-side of (EC.8) over all age
groups

ICU-daily-admissions-
seven-day-avg(t)

Seven-day average of new daily admissions into the ICU, i.e., ICU-
daily-admissions(t) averaged over the last seven days

we also trained trees with maximum depth ranging from four to ten to test the robustness of our
results.

In addition, we also report in Figure EC.5 the tree of depth five trained using the features
described above. Beyond appearing in the first four levels of the tree (which is consistent with
Figure 10), it is worth noting that the econ-to-contacts-ratio continues to be used for splits in the
fifth level, which further supports the importance of that feature.

Lastly, we perform a few other tests of feature importance. Figure EC.6 reports permutation
importance for a very high depth (equal to 10) tree. While at this higher depth there are more
features with non-zero permutation importance, econ-to-contacts-ratio continues to overwhelmingly
dominate the others. We also train another set of depth-four trees to verify this finding through
a different means than permutation feature importance. Specifically, we train a tree with only the
non-targeted features and trees with (all) the non-targeted features plus a single targeted feature.
We do this to see which targeted feature most improves goodness-of-fit versus the non-targeted
tree. Figure EC.7 shows the econ-to-contacts-ratio dominates the other trees, and is very close in
RMSE to the tree using all features reported in Figure 10.
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econ-to-contacts-ratio <= 0.7034
samples = 5,524,785
activity level = 34.49%

econ-to-contacts-ratio <= 0.0875
samples = 2,868,404
activity level = 12.67%

True

R0 <= 4.1065
samples = 2,656,381
activity level = 58.05%

False

econ-to-contacts-ratio <= 0.0115
samples = 1,562,932
activity level = 2.12%

R0 <= 2.1779
samples = 1,305,472
activity level = 25.30%

econ-to-contacts-ratio <= 0.0012
samples = 1,269,478
activity level = 0.21%

R-perc <= 0.566
samples = 293,454

activity level = 10.39%

contacts-elasticity <= 0.7362
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activity level = 0.11%
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activity level = 3.57%
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activity level = 8.94%
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samples = 703
activity level = 27.09%

samples = 5,119
activity level = 89.41%

time <= 35
samples = 223,762

activity level = 60.65%

time <= 77
samples = 1,081,710
activity level = 17.99%

age <= 10
samples = 95,898

activity level = 36.45%

R0 <= 1.6374
samples = 127,864

activity level = 78.81%

samples = 8,637
activity level = 89.03%

samples = 87,261
activity level = 31.25%

samples = 69,836
activity level = 90.14%

samples = 58,028
activity level = 65.16%

R-perc <= 0.4136
samples = 927,180

activity level = 11.53%

N <= 1528206.375
samples = 154,530

activity level = 56.78%

samples = 896,191
activity level = 9.12%

samples = 30,989
activity level = 80.99%

samples = 47,750
activity level = 15.11%

samples = 106,780
activity level = 75.41%

R-perc <= 0.1693
samples = 1,182,202
activity level = 80.01%

time <= 63
samples = 1,474,179
activity level = 40.43%

econ-to-contacts-ratio <= 3.8824
samples = 283,195

activity level = 58.73%

R0 <= 2.7911
samples = 899,007

activity level = 86.72%

R0 <= 2.1547
samples = 178,610

activity level = 44.68%

p_ss <= 0.0901
samples = 104,585

activity level = 82.74%

samples = 64,370
activity level = 72.53%

samples = 114,240
activity level = 28.99%

samples = 86,824
activity level = 87.39%

samples = 17,761
activity level = 60.00%

econ-to-contacts-ratio <= 1.5489
samples = 513,634

activity level = 94.16%

econ-to-contacts-ratio <= 2.5391
samples = 385,373

activity level = 76.79%

samples = 135,771
activity level = 86.36%

samples = 377,863
activity level = 96.97%
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activity level = 61.59%
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activity level = 88.67%

econ-to-contacts-ratio <= 5.4876
samples = 1,052,985
activity level = 29.57%

N <= 1167045
samples = 421,194

activity level = 67.61%

infections-rate-new-elderly-seven-day-avg <= 0.0012
samples = 749,535

activity level = 19.46%

R0 <= 5.9874
samples = 303,450

activity level = 54.52%

samples = 699,712
activity level = 15.56%

samples = 49,823
activity level = 74.22%

samples = 144,210
activity level = 72.25%

samples = 159,240
activity level = 38.46%

act_transport <= 0.5
samples = 142,488

activity level = 37.00%

time <= 77
samples = 278,706

activity level = 83.26%

samples = 87,411
activity level = 19.69%

samples = 55,077
activity level = 64.46%

samples = 140,017
activity level = 69.93%

samples = 138,689
activity level = 96.71%

Decision tree for all activities
RMSE: 0.28597

Figure EC.5 Decision tree of depth five approximating the optimized ROLD AGE-ACT confinement decisions
(trained with 5,524,785 samples), with an optimization horizon of T ′ = 90 days.

EC.6.4.2. Additional Details for the Regression Decision Trees for the Gains of Dual
Targeting The training set consists of 14,039 data samples (i.e., one sample for each problem
instance), where we include several features, and targets corresponding to the relative gains of
ROLD AGE-ACT over ROLD NO-TARGET and over ROLD ACT. The considered features are
listed in Table EC.12. Note that the economic features are calculated as aggregated statistics
(standard deviation) of the econ-to-contacts-ratio over group-activity pairs. When calculating these
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Figure EC.6 Permutation feature importance for different variables, for the depth-10 decision tree for the ROLD
AGE-ACT policy. We show all variables with importance score above 0.005.
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Figure EC.7 Percent decrease in RMSE for the single targeted feature trees and the all features tree, versus the
tree using only non-targeted features, for the ROLD AGE-ACT policy.

statistics, we only use relevant (age group, activity) pairs, where an activity is relevant for an age
group if that age group engages in that activity, as detailed in Table EC.8.

Using this data as training set, we then employ the CART algorithm (implemented in the scikit-
learn Python library) to train regression decision trees to predict the relative gains of ROLD
AGE-ACT over ROLD NO-TARGET, and ROLD AGE-ACT over ROLD ACT, as a function of
the considered features, using the mean-squared-error (MSE) criterion as a goodness of fit metric.
We use 100 as the minimum number of data points in order to split a node.

We report in Figures EC.8 and EC.9 the trees of depth five trained using the features described
above, for the gains of AGE-ACT over NO-TARGET, and AGE-ACT over ACT, respectively.



ec26 e-companion to Author: Targeting for Pandemic Response

Table EC.12 Features used for fitting trees for gains of dual targeting

Feature Name Description

R0 Basic reproduction number

contacts-elasticity The percentage drop in total contacts when activity levels drop by
50%

χ Cost of death

severity-scaling Multiplicative scaling of probabilities pss,g for all groups g

KICU ICU capacity

econ-to-contacts-ratio-
activity-stdev

The standard deviation of econ-to-contacts-ratio(g, a, t0) across rel-
evant age groups for an activity a. We include this feature for each
activity a∈ {work, school, transport, leisure,other}.

econ-to-contacts-ratio-
agegroup-stdev

The standard deviation of econ-to-contacts-ratio(g, a, t0) across rel-
evant activities for an age group g. We include this feature for each
age group g ∈ G.

EC.7. Stylized Model of Linearized Dynamics

This section generates further insight into the structure of the confinement policies produced by
ROLD by examining a significantly simpler version of the problem we study, for which an analytical
characterization is possible. Our goal is to understand how the optimal ROLD policy depends on
various problem primitives (such as economic parameters, contact matrices, etc.), which in turn
will confirm our selection of features for training the tree policies in Section 7 and the prominence
of econ-to-contacts-ratio.
Simplified SEIR model. We consider a simplified compartmental model in which there is a
single population group engaging in a single activity, and there are only susceptible (S), exposed
(E), infectious (I), recovered (R) and deceased (D) compartments. Also for the sake of simplicity,
we consider the continuous time dynamics of this model, namely:

Ṡ(t) =−βC`(t)S(t)I(t)

N
(EC.56)

Ė(t) = βC`(t)
S(t)I(t)

N
−σE(t) (EC.57)

İ(t) = σE(t)−µI(t) (EC.58)

Ṙ(t) = (1− p)µI(t) (EC.59)

Ḋ(t) = pµI(t). (EC.60)

We pause to explain the new dynamical equations. Since there is a single group and activity, the
new infections term βC`(t)S(t)I(t) is significantly simplified. Here, β is the transmission rate and
C is the rate at which social contacts occur. Furthermore, σ and µ are the transition rates defined
analogously to our original model. Since in this stylized model we remove hospitalized states, we
have a direct transition from I to R or D; we denote by p the probability that an individual dies
given that they are infectious. We denote by N the total population size.

Activity levels. The control is the activity level of the population and is one-dimensional, so
we denote it by `, in analogy to the original model. We simplify the economic model by taking
the economic value as a linear function of the activity level `, i.e., w`, where w is the economic
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samples = 1827
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Decision tree for relative gains of AGE-ACT over NO-TARGET
RMSE: 0.07558

Figure EC.8 Decision tree of depth five approximating the relative gains of the dual-targeted ROLD AGE-ACT
over ROLD NO-TARGET for the total loss, trained on a total of 14,039 problem instances with an
optimization horizon of T ′ = 90 days. The nodes are color-coded based on the relative gains, with
darker colors corresponding to smaller gains.

value generated per capita and per unit time under no confinement. Given the same cost of death
parameter χ, the objective is to maximize:18.∫ T

t=0

w`(t)(S(t) +E(t) + I(t) +R(t))dt−χD(T ). (EC.61)

Solving the linearized system. To facilitate the analysis, we make the assumption that through-
out the time horizon and for any activity level, S(t)≈N . In that case, the new infections term can
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Decision tree for relative gains of AGE-ACT over ACT
RMSE: 0.05605

Figure EC.9 Decision tree of depth five approximating the relative gains of the dual-targeted ROLD AGE-
ACT over ROLD ACT for the total loss, trained on a total of 14,039 problem instances with an
optimization horizon of T ′ = 90 days. The nodes are color-coded based on the relative gains, with
darker colors corresponding to smaller gains.

be approximated as

βC`(t)
S(t)I(t)

N
≈ βC`(t)I(t),

leading to the approximate dynamics:

Ṡ(t)≈−βC`(t)I(t) (EC.62)

Ė(t)≈ βC`(t)I(t)−σE(t) (EC.63)

İ(t) = σE(t)−µI(t) (EC.64)

Ṙ(t) = (1− p)µI(t) (EC.65)



e-companion to Author: Targeting for Pandemic Response ec29

Ḋ(t) = pµI(t). (EC.66)

In compact notation, these approximate SEIR dynamics can be written as Ẋ(t) = F̃ (X(t), `(t)),
where X(t) = (S(t),E(t), I(t),R(t),D(t)) and the function F̃ captures (EC.62)-(EC.66).

Additionally, under the assumption S(t)≈N , the objective simplifies to:∫ T

t=0

w`(t)Ndt−χD(T ), (EC.67)

since S(t) +E(t) + I(t) +R(t)≈N .
With respect to this linearized dynamic and approximate objective, the control problem is:

max
{`(t)}

∫ T

t=0

w`(t)Ndt−χD(T ) (EC.68)

s.t. (EC.62)− (EC.66) (EC.69)

`(t)∈ [0,1], ∀t. (EC.70)

Note that the control problem under the simplified model does not include capacity constraints,
as we have removed the hospitalized states from the model.

Although the dynamics in (EC.62) - (EC.66) are linear, the bilinear terms coming from multi-
plying ` with the SEIR states still make the problem difficult to solve. We thus proceed with a
linearization of the problem which mimics the workings of the ROLD algorithm in Section 4, and
characterize the optimal policy for this linearized problem. Analogously to Section 4, consider a
nominal time-invariant control ˆ̀, and a nominal trajectory X̂. We build a linear approximation of
the system dynamics as:

Ẋ(t)≈ F̃ (X̂, ˆ̀) +∇XF̃ (X̂, ˆ̀)(X(t)− X̂) +∇`F̃ (X̂, ˆ̀)(`(t)− ˆ̀) (EC.71)

=AX(t) +B`(t) + c, (EC.72)

where

A=


0 0 −βCˆ̀ 0 0

0 −σ βCˆ̀ 0 0
0 σ −µ 0 0
0 0 (1− p)µ 0 0
0 0 pµ 0 0

 , B =


−βCÎ
βCÎ

0
0
0

 , c= F̃ (X̂, ˆ̀)−∇XF̃ (X̂, ˆ̀)X̂ −∇`F̃ (X̂, ˆ̀)ˆ̀.

(EC.73)

This allows us to express the state at any t as a function of the confinement decision `(τ) for all
0≤ τ ≤ t. In particular, the solution of the dynamical system Ẋ(t) =AXt +B`(t) + c is

X(t) = eAtX(0) +

∫ t

0

eA(t−τ) (B`(τ) + c)dτ. (EC.74)

Note that we can readily write the objective (EC.68) as maximizing∫ T

0

wN`(t)dt−χD(t) =

∫ T

0

(wN`(t)−χpµI(t))dt, (EC.75)

without resorting to any Taylor approximations for linearization.
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By plugging in the solution for the dynamical system (EC.74), we have∫ T

0

I(t)dt=

∫ T

0

(
e>3 e

AtX(0) +

∫ t

0

e>3 e
A(t−τ) (B`(τ) + c)dτ

)
dt (EC.76)

=

∫ T

0

e>3 e
AtX(0)dt+

∫ T

t=0

∫ t

τ=0

e>3 e
A(t−τ) (B`(τ) + c)dτdt (EC.77)

=

∫ T

0

e>3 e
AtX(0)dt+

∫ T

τ=0

(∫ T

t=τ

e>3 e
A(t−τ)dt

)
(B`(τ) + c)dτ (EC.78)

=

∫ T

0

e>3 e
AtX(0)dt+

∫ T

t=0

(∫ T

τ=t

e>3 e
A(τ−t)dτ

)
(B`(t) + c)dt, (EC.79)

where e3 := [0,0,1,0,0].
We can now rewrite the objective in (EC.75) as∫ T

0

(
wN −χpµ

∫ T

t

e>3 e
A(τ−t)dτ ·B

)
`(t)dt+

∫ T

0

(
e>3 e

AtX(0)−χpµ
∫ T

t

e>3 e
A(τ−t)dτ · c

)
dt.

(EC.80)

The second summand is a constant with respect to the control. The coefficient of `(t) in the integral
in the first summand calculates to

wN −χpµ ·
2βCÎσ

(
exp

(
1
2 (t−T )

(√
4βC ˆ̀σ+(µ−σ)2+µ+σ

))
−1

√
4βC ˆ̀σ+(µ−σ)2+µ+σ

−
exp

(
− 1

2 (t−T )

(√
4βC ˆ̀σ+(µ−σ)2−µ−σ

))
−1

−
√

4βC ˆ̀σ+(µ−σ)2+µ+σ

)
√

4βC ˆ̀σ+ (µ−σ)2

,

(EC.81)

and the optimal policy is to set ` to 1 if and only if the expression above is non-negative.
It is perhaps most useful to focus on understanding the resulting policy for the case that ˆ̀ = 0,

in which case the coefficient of `(t) takes a simpler form equal to

wN −χpµ ·
2βCÎσ

(
exp( 1

2 (t−T )(|µ−σ|+µ+σ))−1

|µ−σ|+µ+σ
− exp(− 1

2 (t−T )(|µ−σ|−µ−σ))−1

−|µ−σ|+µ+σ

)
|µ−σ|

. (EC.82)

The optimal decision then is

`∗(t) =

{
1 if w

C
≥ f(β,χ, p,σ,µ,N, Î, t, T )

0 otherwise,
(EC.83)

where

f(β,χ, p,σ,µ,N, Î, t, T ) :=
2βχpσµÎ

N |µ−σ|
·

(
exp

(
1
2
(t−T ) (|µ−σ|+µ+σ)

)
− 1

|µ−σ|+µ+σ

−
exp

(
− 1

2
(t−T ) (|µ−σ| −µ−σ)

)
− 1

−|µ−σ|+µ+σ

)
. (EC.84)

(We note that19. f(β,χ, p,σ,µ,N, Î, t, T )≥ 0 for 0≤ t≤ T .)
Inequality (EC.83) uncovers a natural logic for the confinement decisions in this linearized for-

mulation. Specifically, the left-hand side exactly corresponds to the econ-to-contacts-ratio that
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we identified in Section 7: it is given by the gradient of (per-capita) economic value generated
with respect to the level of activity `(t)20. divided by the rate of social contacts generated. Thus,
the optimal policy is governed by a threshold on the value of the econ-to-contacts-ratio, allowing
normal activity levels (`(t) = 1) when the econ-to-contacts-ratio exceeds the threshold and com-
pletely confining the entire population (`(t) = 0) otherwise. The threshold, given by the function
f(β,χ, p,σ,µ,N, Î, t, T ), is increasing in parameters such as the probability of infection given a
contact β, the probability of death given infection p, and the cost of death χ, and is decreasing in
the size of the overall population N , which matches intuition.

We remark that the simple threshold policy relying on econ-to-contacts-ratio emerges when we
impose ˆ̀ = 0 in (EC.81); for general ˆ̀, the policy still follows a threshold rule based on the marginal
economic value exceeding a function that depends on problem parameters and the rate of contacts,
but the simple ratio no longer emerges in the rule.

There are two conclusions we highlight from this stylized model analysis. First, even with sig-
nificant simplifications such as a single group and activity, the policies output by ROLD or similar
procedures are quite complex and elusive to completely characterize in closed form. Second, there
are however interesting regimes where these policies intuitively depend on a quantity resembling
the econ-to-contacts-ratio. In this light, selecting the group-activity pairs to be confined in decreas-
ing order of their econ-to-contacts-ratios, as our trees from Section 7 do, naturally parallels the
policy in (EC.83). This provides some theoretical backing to the feature that the trees consider to
be important in explaining ROLD’s decisions.

EC.8. Details on the Practically Implementable Policies
EC.8.1. Retrieving Participation Rates from the Time-Use Survey Data

The time-use survey data by INSEE (2010) follows a data format that is harmonized with EU
standards for time-use surveys. Each row in the main data file is a “diary” that corresponds to
a specific day of a specific survey participant. Among other information, a diary has information
on the self-reported location of the participant, as well as the self-reported main activity of the
participant, per 10-minute interval (for a total of 144 intervals over the 24-hour day). The survey
participant selects both the reported location and the reported main activity from a given menu
of options.

Most of the reported locations in the diaries map naturally into one of our six activities in the set
A= {work, transport, leisure, school,home,other}. However, for four of the reported locations in the
diaries (“Unspecified location/transport mode”, “Unspecified location (not travelling)”, “Work-
place or school”, “Other specified location (not travelling)”), we use supplemental information on
the main activity pursued, as well as on the activity (i.e., employment) status of the individual, to
decide on the exact mapping. In particular:

• For reported locations “Unspecified location/transport mode”, “Unspecified location (not trav-
elling)”, “Other specified location (not travelling)”, we map the location to one or more of our
activities in set A on the basis of the reported time-use activity, using our judgment on which of
our activities are highly relevant for the respective pair of reported location-activity in the survey.

• For reported location “Workplace or school”:
— If the activity (employment) status of the survey participant is “Pupil, student, further

training, unpaid traineeship”, then for most reported activities we assign to our activity school.
For a few reported activities that relate to transport, we assign to both school and transport.

— If the activity (employment) status of the survey participant is “Employed full-time” or
“Employed part-time”, then for most reported activities we assign to our activity work. For a few
reported activities, we assign either to school; work and school; work and transport; or school and
transport.

— Otherwise (i.e., if the activity status of the survey participant is neither of the above), then
for most reported activities we assign to both our activities work and school. For a few reported
activities, we assign either to only work; only school; work and transport; or school and transport.
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We detail how we calculate the participation rates Rag(τ) in Algorithm 7. When the proposed
mapping assigns to more than one of our activities, then we split the 10 minutes of the corresponding
10-minute interval equally across the proposed activities. We note that the time-use survey data
does not include responses from participants aged below 10 y.o., and therefore for our 0-9 y.o. age
group we propose an interpolation from survey participants aged 10, 11, and 12 y.o.

Algorithm 7 Calculating Participation Rates Rag(τ)

for age group g ∈ {0-9, . . . , 80+ y.o.} do
for activity a∈A do

for hourly slot τ = 1,2, . . . ,24 do
if g 6= 0-9 y.o. then

ratio weekdays :=

∑
diaries from g on weekdays

∑
10-min intervals of τ mins spent on act. a during that interval in that diary

(# diaries from g on weekdays) · 60

ratio weekend :=

∑
diaries from g on weekend

∑
10-min intervals of τ mins spent on act. a during that interval in that diary

(# diaries from g on weekend) · 60

else

ratio weekdays :=

∑
diaries from 10-12 y.o. on weekdays

∑
10-min intervals of τ mins spent on act. a during that interval in that diary

(# diaries from 10-12 y.o. on weekdays) · 60

ratio weekend :=

∑
diaries from 10-12 y.o. on weekend

∑
10-min intervals of τ mins spent on act. a during that interval in that diary

(# diaries from 10-12 y.o. on weekend) · 60

end if

Rag(τ) :=
5

7
· ratio weekdays +

2

7
· ratio weekend

end for
end for

end for

EC.8.2. Details on the Gradient Descent Procedure for Optimizing Curfews

We used the ‘trust-constr’ method in the scipy-optimize Python library, and employed its default
parameter settings. For a given problem instance, we initialized the optimization algorithm using
two different strategies:

• Random initialization: For each activity, we sample the start and duration of the curfew
uniformly at random, both from the 0− 24 hours interval. We repeat this exercise for a total of
120 iterations.

• ROLD ACT solution initialization, randomly perturbed: For each activity, we draw an i.i.d.
Bernoulli variable with probability of success p, where p is a parameter explained below. In case of
success, the curfew is initialized at the ROLD ACT solution. In case of failure, we sample the start
and duration of the curfew uniformly at random, both from the 0− 24 hours interval. We vary
the parameter p in the range [0,1/6,2/6,3/6,4/6,5/6] and repeat this exercise for 20 iterations for
each of the values for parameter p. This gives a total of 120 iterations.

Each of the iterations is run for 24 hours using two strategies:
• Full completion: The algorithm runs until local optimality, which, on average, is achieved after

eight hours.
• Partial completion: The algorithm runs for two hours and is restarted with a new random seed

for a total of 12 times.
In total, we used 600 CPUs, each running for 24 hours, where the processors used in the cluster

were Intel E5-2640v4, Intel 5118, and AMD 7502. We note that we did not optimize the code for
more efficient computation.
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EC.8.3. Time-Average Aggregate Activity Levels for Age Groups

We calculate the time-average activity level of each age group, averaged over the activities relevant
to that age group (Table EC.8), and weighting different activities by the respective participation
rates. Specifically, for AGE-ACT, ACT, and NO-TARGET, the proposed calculation is the one
in (EC.55) (and similarly for the other age groups). For CURFEW, the proposed calculation just
replaces `ag(t) in these equations with `a,eff

g (t) from (15).

EC.8.4. Details on Limited Compliance Policies with Age-Group-Specific Compliance
Fractions

We use the estimates for age-group-specific non-compliance probabilities by Ganslmeier et al.
(2022) to estimate a relative scaling of compliance probabilities across age groups. Ganslmeier et al.
(2022) estimate non-compliance probabilities based on data from the first COVID-19 lockdown in
the UK. Because the age groups used by Ganslmeier et al. (2022) are different from ours, to find
the compliance probability pg for an age group g ∈ G we take the conservative approach of using
the minimum over the compliance probabilities of the age groups of Ganslmeier et al. (2022) that
intersect with age group g. For our 0-9 y.o. age group, for which Ganslmeier et al. (2022) do not
estimate compliance, we use the compliance probability from Ganslmeier et al. (2022) for their
youngest group, 18-24 y.o. Table EC.13 summarizes the age-group specific compliance probabilities
we interpolate for our age groups. Based on these, we estimate a relative scaling between compliance
probabilities of different age groups, assuming that the relative scaling in France and in particular
Île-de-France would be similar to the relative scaling in the UK.

Table EC.13 Fraction of the population that complies with recommended restrictions by age group as
interpolated from study by Ganslmeier et al. (2022)

Age Group g (y.o.) Compliance Fraction pg (%)

0-9 96.10

10-19 96.10

20-29 94.66

30-39 94.66

40-49 95.50

50-59 96.27

60-69 96.40

70-79 96.45

80+ 96.45

Restricting to that fixed relative scaling, we refer to the resulting effective activity levels as the
ROLD COMP-NH(p) policy, where NH stands for non-homogeneous across age groups, and where
p is the compliance fraction for the least compliant age group according to the scaling. We look
at the performance of the ROLD COMP-NH(p) policy as the compliance fraction p varies. The
results are similar to the results for limited compliance policies with a population-wide compliance
fraction (ROLD COMP(p)), and are summarized in Figure EC.10.
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septembre. Franceinfo Accessed October 5, 2020.

Mohammad H (2020) Coronavirus : un habitant de Bobigny considéré comme le nou-
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ć
(2

0
2
0
);

V
a
so

v
ic

(2
0
2
0
)

S
er

b
ia

A
ll

o
f

S
er

b
ia

A
G

E
-A

C
T

S
h

o
p

p
in

g
6
5
+

y.
o
.

P
er

so
n

s
a
b

o
v
e

th
e

a
g
e

o
f
6
5

a
ll
o
w

ed
to

le
a
v
e

h
o
m

e
to

b
u

y
g
ro

ce
ri

es
fr

o
m

3
a
.m

.
to

8
a
.m

.
o
n

ly
o
n

sp
ec

-
ifi

ed
d

a
y

o
f

th
e

w
ee

k
.
A

ss
ig

n
ed

d
a
y

sh
if

te
d

fr
o
m

S
u

n
d

a
y

to
S

a
tu

rd
a
y,

th
en

to
F

ri
d

a
y.

In
eff

ec
t

M
a
rc

h
1
8
,

2
0
2
0
.

S
h

if
t

to
S

a
tu

rd
a
y

in
eff

ec
t

A
p

ri
l

3
,

2
0
2
0

S
te

v
a
n

o
v
ić
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Ruiz-Lopez MD, Garćıa-Villanova B (2021) Exploring dietary behavior changes due to the covid-19 confinement in
colombia: A national and regional survey study. Frontiers in Nutrition URL https://www.frontiersin.org/articles/

10.3389/fnut.2021.644800/full#B5, accessed April 29, 2022.

Picheta R, Qiblawi T (2020) Jordan eases lockdown after total curfew leads to chaos. CNN URL https://edition.cnn.com/

2020/03/25/middleeast/jordan-lockdown-coronavirus-intl/index.html, accessed April 30, 2022.

Portafolio (2020) Tumban cuarentena obligada para adultos mayores de 70 años. Portafolio URL https://www.portafolio.co/

economia/gobierno/tumban-cuarentena-obligatoria-para-adultos-mayores-de-70-anos-coronavirus-en-colombia-hoy-12-agosto-2020-543583,
accessed April 29, 2022.

President of the Republic of Colombia (2020) Estas son las medidas que se deben
tener en cuenta para la salida de los niños durante la cuarentena. President of
the Republic of Colombia URL https://id.presidencia.gov.co/Paginas/prensa/2020/

Estas-son-las-medidas-que-se-deben-tener-en-cuenta-para-la-salida-de-los-ninos-durante-la-cuarentena-200507.

aspx3, accessed April 29, 2022.

Reuters (2020) Kenya partially reopens schools, 6 months after covid shuttered them. Vox URL https://www.voanews.com/

a/covid-19-pandemic_kenya-partially-reopens-schools-6-months-after-covid-shuttered-them/6197024.html,
accessed April 30, 2022.

Reuters Staff (2020a) Colombia declares coronavirus state of emergency, orders elderly to stay home. Reuters URL https:

//www.reuters.com/article/us-health-coronavirus-colombia-idUSKBN2150AI, accessed April 30, 2022.

Reuters Staff (2020b) Hungary imposes restricted shopping hours to protect elderly in pandemic. Reuters URL https://www.

reuters.com/article/uk-health-coronavirus-hungary-idUKKBN2831OW, accessed April 30, 2022.

Reuters Staff (2020c) Reopening schools in Denmark did not worsen outbreak, data shows.
Reuters URL https://www.reuters.com/article/us-health-coronavirus-denmark-reopening/

reopening-schools-in-denmark-did-not-worsen-outbreak-data-shows-idUSKBN2341N7, accessed April 30, 2022.

Reuter’s Staff (2020) Serbia’s elderly venture out for dawn food run. Reuters URL https://www.reuters.com/article/

health-coronavirus-serbia-elderly-idUSL8N2BM0A5, accessed April 29, 2022.

Sadikovic M, Synovitz R (2020) Coronavirus in court: Bosnia’s age-based lockdowns
are ruled discriminatory. RadioFreeEurope/RadioLiberty URL https://www.rferl.org/a/

coronavirus-in-court-bosnia-s-age-based-lockdowns-are-ruled-discriminatory/30574453.html, accessed April
30, 2022.

Saraya News (2020) Adaileh: The government continues to ban children and the elderly from leaving. Saraya News URL https:

//www.sarayanews.com/article/611788?fbclid=IwAR0B__fhu348B9y0BAnVM6UN5tIOSj-kRa9r3i3wYenXbrIeQSmMN-GgE6c,
accessed April 30, 2022.

Staff R (????) Bosnian region eases lockdown on seniors, children after court ruling .

https://koronavirus.mzcr.cz/semiori-by-meli-co-nejvice-omezit-vychazeni-ven/
https://edition.cnn.com/2022/01/27/india/india-delhi-schools-reopen-600-days-intl-hnk/index.html
https://edition.cnn.com/2022/01/27/india/india-delhi-schools-reopen-600-days-intl-hnk/index.html
http://www.nwccw.gov.cn/2020-04/24/content_283708.htm
https://www.unicef.org/uganda/stories/i-wish-i-could-have-some-magic-i-would-just-say-let-schools-open-right-away
https://www.unicef.org/uganda/stories/i-wish-i-could-have-some-magic-i-would-just-say-let-schools-open-right-away
https://www.bahamas.gov.bs/wps/wcm/connect/df5a4569-9c5b-40e4-85f3-d764584aef5c/Statement+-+Food+shopping+schedule.pdf?MOD=AJPERES
https://www.bahamas.gov.bs/wps/wcm/connect/df5a4569-9c5b-40e4-85f3-d764584aef5c/Statement+-+Food+shopping+schedule.pdf?MOD=AJPERES
https://tinyurl.com/3vppjmm6
https://www.brookings.edu/blog/education-plus-development/2020/05/06/how-school-closures-during-covid-19-further-marginalize-vulnerable-children-in-kenya/#:~:text=On%20March%2015%2C%202020%2C%20the,devastating%20consequences%20for%20marginalized%20learners.
https://www.brookings.edu/blog/education-plus-development/2020/05/06/how-school-closures-during-covid-19-further-marginalize-vulnerable-children-in-kenya/#:~:text=On%20March%2015%2C%202020%2C%20the,devastating%20consequences%20for%20marginalized%20learners.
https://www.brookings.edu/blog/education-plus-development/2020/05/06/how-school-closures-during-covid-19-further-marginalize-vulnerable-children-in-kenya/#:~:text=On%20March%2015%2C%202020%2C%20the,devastating%20consequences%20for%20marginalized%20learners.
https://www.frontiersin.org/articles/10.3389/fnut.2021.644800/full#B5
https://www.frontiersin.org/articles/10.3389/fnut.2021.644800/full#B5
https://edition.cnn.com/2020/03/25/middleeast/jordan-lockdown-coronavirus-intl/index.html
https://edition.cnn.com/2020/03/25/middleeast/jordan-lockdown-coronavirus-intl/index.html
https://www.portafolio.co/economia/gobierno/tumban-cuarentena-obligatoria-para-adultos-mayores-de-70-anos-coronavirus-en-colombia-hoy-12-agosto-2020-543583
https://www.portafolio.co/economia/gobierno/tumban-cuarentena-obligatoria-para-adultos-mayores-de-70-anos-coronavirus-en-colombia-hoy-12-agosto-2020-543583
https://id.presidencia.gov.co/Paginas/prensa/2020/Estas-son-las-medidas-que-se-deben-tener-en-cuenta-para-la-salida-de-los-ninos-durante-la-cuarentena-200507.aspx3
https://id.presidencia.gov.co/Paginas/prensa/2020/Estas-son-las-medidas-que-se-deben-tener-en-cuenta-para-la-salida-de-los-ninos-durante-la-cuarentena-200507.aspx3
https://id.presidencia.gov.co/Paginas/prensa/2020/Estas-son-las-medidas-que-se-deben-tener-en-cuenta-para-la-salida-de-los-ninos-durante-la-cuarentena-200507.aspx3
https://www.voanews.com/a/covid-19-pandemic_kenya-partially-reopens-schools-6-months-after-covid-shuttered-them/6197024.html
https://www.voanews.com/a/covid-19-pandemic_kenya-partially-reopens-schools-6-months-after-covid-shuttered-them/6197024.html
https://www.reuters.com/article/us-health-coronavirus-colombia-idUSKBN2150AI
https://www.reuters.com/article/us-health-coronavirus-colombia-idUSKBN2150AI
https://www.reuters.com/article/uk-health-coronavirus-hungary-idUKKBN2831OW
https://www.reuters.com/article/uk-health-coronavirus-hungary-idUKKBN2831OW
https://www.reuters.com/article/us-health-coronavirus-denmark-reopening/reopening-schools-in-denmark-did-not-worsen-outbreak-data-shows-idUSKBN2341N7
https://www.reuters.com/article/us-health-coronavirus-denmark-reopening/reopening-schools-in-denmark-did-not-worsen-outbreak-data-shows-idUSKBN2341N7
https://www.reuters.com/article/health-coronavirus-serbia-elderly-idUSL8N2BM0A5
https://www.reuters.com/article/health-coronavirus-serbia-elderly-idUSL8N2BM0A5
https://www.rferl.org/a/coronavirus-in-court-bosnia-s-age-based-lockdowns-are-ruled-discriminatory/30574453.html
https://www.rferl.org/a/coronavirus-in-court-bosnia-s-age-based-lockdowns-are-ruled-discriminatory/30574453.html
https://www.sarayanews.com/article/611788?fbclid=IwAR0B__fhu348B9y0BAnVM6UN5tIOSj-kRa9r3i3wYenXbrIeQSmMN-GgE6c
https://www.sarayanews.com/article/611788?fbclid=IwAR0B__fhu348B9y0BAnVM6UN5tIOSj-kRa9r3i3wYenXbrIeQSmMN-GgE6c


ec42 e-companion to Author: Targeting for Pandemic Response
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