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Increasing the welfare of smallholder farmers in developing countries plays a crucial role in the global effort

to reduce worldwide poverty and hunger. On the one hand, smallholders represent a large proportion of the

world’s poor and, on the other, they produce the majority of the food consumed in developing countries.

This realization has led governments and organizations around the world to implement policies aimed at

increasing farmers’ yields. Although most of these policies have resulted in welfare increases, the environ-

mental effects have been varied. While in many settings intensification policies have been linked to a decrease

in deforestation, in many other settings the reverse is true. In this chapter we propose a novel explanation

of these seemingly contradictory results. We achieve this through studying a detailed operational model of

a farmer’s dynamic decisions of land-clearing and production. We show the importance of considering the

interaction between random production costs and liquidity constraints faced by smallholder farmers. These

two elements are key to our main result: a reduction in the cost of intensification can lead to lower defor-

estation rates when the variation in production costs is high enough compared to the cost of intensification.

Alternatively, the same reduction in the cost of intensification may lead to higher deforestation rates if the

variation in production costs is low enough compared to the cost of intensification. This result helps explain

the discrepancies seen in practices and may allow policy makers to better target interventions in order to

achieve win-win situations: improvement of smallholder welfare and protection of the natural forest.
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1. Introduction
Out of the 1.4 billion people living on less than US$1.25 per day, one billion are smallholder farmers
working on land plots smaller than 2 hectares (Rapsomanikis 2015). Yet, at the same time, over 80
per cent of the food consumed in a large part of the developing world is produced by smallholders
(IFAD 2013). This puts smallholders at the center of the global efforts to both reduce poverty
and increase agricultural production. The latter being ever more important given the rising food
demand that is roughly expected to double by 2050 (Tilman et al. 2011). Motivated by these goals
and inspired by the Asian Green Revolution of the 60’s and 70’s (Hazell 2009), governments and
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NGOs have been actively implementing programs to increase agricultural productivity (see e.g.,
Djurfeldt et al. 2005, Rashid et al. 2013).

Many of these programs have had some success in increasing the total agricultural productivity.
However, in many cases, they have also contributed to the increasing rates of tropical deforestation
(see § 1.2). Indeed, agricultural expansion has been widely recognized as one of the main causes of
tropical deforestation (Geist and Lambin 2002, Kissinger et al. 2012), which in turn is one of the
leading causes of anthropogenic Green House Gas emissions (Houghton 2012).

At the same time, the rising temperatures and increased variability of weather events caused by
climate change directly affects smallholders (Nelson et al. 2014). Faced with little capital and higher
variability in their costs, smallholders turn to land expansion. This makes it even more important
to understand the following question: can agricultural intensification be achieved while avoiding
deforestation?

In order to better understand the answer to this question, we present a dynamic model of farmer
operations under liquidity constraints and random production costs. We show that the combination
of these two factors plays a major role in determining when intensification—defined as any increase
in agricultural productivity—will exacerbate or mitigate deforestation. In particular, we show that
reducing the cost of intensification can either increase or decrease the deforestation pressure, de-
pending on how large the marginal intensification costs are compared to the variation in production
costs.

1.1. Main Contribution
We develop a general dynamic model of a farmer’s operations, allowing for both productive and
land-clearing decisions under liquidity constraints. This allows us to study the effects of changing
the farmer’s cost structure on their optimal decisions. Our model confirms many previously found
results on how farmer welfare increases when reducing production costs (both the average and
variability of costs), and when improving access to loans (e.g., Asfaw et al. 2012). Furthermore, we
show that although all of these changes would increase the total intensification effort of farmers,
they would also lead to a higher rate of deforestation.

We show that, surprisingly, directly reducing the cost of intensification may have different effects
on the rate of deforestation: if the intensification cost is low compared to the production cost
variability, reducing the intensification cost reduces the deforestation pressure. On the other hand,
if the intensification cost is high, a reduction would increase the pressure. This result helps to shed
light on the contradicting empirical evidence linking intensification promotion and deforestation
(see §1.3).

Central to our results is our consideration of random production costs that are directly pro-
portional to the total productive land. These random shocks occur frequently in practice due to
uncertainty when bringing products to market. For instance, transportation costs may be greatly
affected by weather conditions when roads are not paved, or labor costs may be higher than ex-
pected during harvest season. These risks in the total production costs combine with liquidity
constraints to generate a downward pressure on the deforestation rate: faced with a high risk of
having to borrow at high interest rates, farmers react to a reduction in the cost of intensification
by increasing their rate of production in a smaller productive area.

Our results highlight the importance of considering the specific operational context when design-
ing policy interventions. As has been shown many times in practice, the indiscriminate application
of policies can have significant negative consequences. Our model helps policy makers understand
the relationship between intensification and deforestation by categorizing farmers and communities
of farmers based on their intrinsic characteristics.
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1.2. Related Literature
The Environmental Science literature has widely documented that agricultural expansion is the
dominant driver of illegal deforestation in developing countries (e.g., Carlson et al. 2018, Geist
and Lambin 2002). Although there are many proximate causes of deforestation processes, such as
economic and institutional factors, the question of whether yield increases is one of these causes is
still very much under debate. There is a significant amount of empirical evidence showing how yield
increases may lead to both lower rates of deforestation and, on the contrary, higher deforestation
rates (see §1.3 for a summary of some of these settings). Stemming from these empirical observa-
tions, there has been extensive work in the Agricultural Economics literature to shed light on these
seemingly contradictory effects (see Angelsen and Kaimowitz 2001 and Angelsen and Kaimowitz
1999 for excellent reviews of these models). Most of the explanations put forth in this body of work
can be broadly categorized into three types: labor supply driven (e.g., Maertens et al. 2006, Shively
and Pagiola 2004), driven by the elasticity of demand for the agricultural products (e.g., Jayasuriya
et al. 2001), or driven by the different types of utility functions of the farmers (e.g., Angelsen et al.
2001). Our work adds to this discussion by considering the role of random production costs paired
with liquidity constraints and showing how these two factors play a major role in determining how
intensification will affect deforestation.

To develop our model of farmer operations, we use insights from development economics,
operations-finance, and sustainable-operations. From the latter, our model generalizes the farmer
dynamic model presented in de Zegher et al. (2018), by allowing for dynamic deforestation decisions
and generalizing the concave production functions used. From the operations-finance literature, our
formulation resembles the models of dynamic production decisions under limited cash inventory,
such as Li et al. (2013) and Ning and Sobel (2017). In our model, farmers experience Guassian
production cost shocks, that drive them to informally borrow at high rates from specific agents
within their community, this is in line with findings from the Development Economics literature
(e.g., Collins et al. 2009). Economists have documented that smallholder farmers have limited ac-
cess to the formal financial system, and rely on informal loans within their communities (Duflo
and Banerjee 2011), paying interest rates that increase in the size of the loans. To model these
increasing interest payments we adopt an exponential function (see e.g., Ghosh et al. 2000).

In the Environmental Economics and Mechanism Design literature there has been recent interest
in designing optimal mechanisms to halt deforestation and preserve natural ecosystems (see, e.g.,
Mason and Plantinga 2013, Li et al. 2020). Most of these works have been focused on the design
of Payments for Ecosystem Services, and not on the detailed operations of farmers. Although in
our work we aim at establishing mechanisms for forest protection, we concentrate on the farm-
ers’ production operations, and not on the principal-agent problems that arise from the possible
conservation mechanisms.

Our work connects as well with the growing body of work in the operations management lit-
erature aimed at improving farmers’ welfare and social welfare in agricultural supply chains (see
Bouchery et al. 2016 and Kalkanci et al. 2019 for reviews). Several recent studies have focused on
the production operations of farmers (e.g., Dawande et al. 2013, Boyabatlı et al. 2019, Federgruen
et al. 2019, Hu et al. 2019, Levi et al. 2020), as well as the effects of different subsidy schemes on
farmer’s decisions (e.g., Chintapalli and Tang 2018, Alizamir et al. 2019, Akkaya et al. 2021). In
our work we not only examine mechanisms that lead to higher farmer welfare, but study dynamic
deforestation decisions.

1.3. Examples
In this section we present several empirical examples of how promoting intensification has lead to
both increase and decrease of deforestation pressures. The purpose of this section is to illustrate



XW, DI, EP: Intensification vs. Deforestation
4 00(0), pp. 000–000, © 0000 INFORMS

how our result connects to the empirical literature, but it is not an exhaustive review of all such
works (see Angelsen and Kaimowitz (2001) and references therein for a broader review).

Governments and NGOs routinely implement two types of programs to incentivize intensification;
the first aimed at reducing the cost of inputs, such as fertilizers or pesticides (see, e.g., Pelletier
et al. 2020), the second aimed at decreasing the cost of new technology adoptions, such as higher
yield seeds or better agricultural practices (see, e.g., Garrett et al. 2013).

In the case of reducing the cost of inputs, this is usually done through either subsidies or low
interest rate credits. This is the case for the fertilizer subsidy programs implemented in Zambia and
Malawi (see Pelletier et al. 2020, Abman and Carney 2020). Interestingly, although both programs
were implemented with similar goals and were indeed successful in increasing yields and farmer
welfare, the evidence suggests that in Zambia increased fertilizer use was weakly linked to increased
deforestation, while in Malawi, the reverse was found.

In order to reduce the cost of new technology adoption, interventions usually include a combi-
nation of training and subsidies for the purchase of new improved inputs (e.g., better seeds). In
the case of the Brazilian policy of providing low interest rate credits for the purchase of higher
producing soybeans (that was put into place at the end of the 20th century) the results suggest
that the improvement in yields led to a higher deforestation rate of the Amazonian forest (Garrett
et al. 2013). In Malawi and Zambia, together with the fertilizer programs, the governments imple-
mented high subsidies for the purchase of high-yield maize seeds (Pelletier et al. 2020, Abman and
Carney 2020). In contrast to what happened when subsidizing fertilizer, the yield increase caused
by the new maize-seeds reduced deforestation in both countries. This same effect was observed
in Bangladesh, after government programs subsidized higher yielding crops (Aravindakshan et al.
2021).

Finally, examples of training in better agricultural practices and technologies can be found In-
donesia and Malaysia (e.g., Maertens et al. 2006, Villoria et al. 2013). In the case of Indonesia,
Maertens et al. (2006) differentiate between the effects observed by yield-saving technologies (that
reduced deforestation) and labor-saving technologies (that increased deforestation). While Villoria
et al. (2013) observed an increase in deforestation related to higher yields in the oil-palm value
chain. Table 1 provides a summary of these varied empirical findings.
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Country Type of Intervention Does Intensification Lead to
Deforestation?

Reference

Brazil Credits for purchasing
better yielding soybeans.

Yes,higher yields led to increased
deforestation in the absence of strong
regulations.

Garrett et al. (2013)

Indonesia
(Lore
Lindu)

Introduction of labor
saving and yield
increasing technologies.

Labor saving technologies increased
deforestation, yield increasing
technologies reduced deforestation.

Maertens et al. (2006)

Indonesia
and
Malaysia

Training in better
agricultural practices
and technologies.

Yes, higher yields were associated
with higher deforestation.

Villoria et al. (2013)

Zambia Subsidy of fertilizer and
improved maize seeds.

Fertilizer subsidy was weakly linked
to increased deforestation; Improved
seeds use was linked to a decrease in
deforestation.

Pelletier et al. (2020)

Malawi Subsidies for fertilizer
and higher yield seeds.

No, lower rates of deforestation were
observed.

Abman and Carney (2020)

Bangladesh Introduction of higher
yielding crops.

No, lower rates of deforestation were
observed.

Aravindakshan et al. (2021)

Table 1 Empirical evidence on the Intensification-Deforestation connection. Summary of some of the
many works showing how intensification can either cause or prevent deforestation.

2. Model Formulation
We model the operations of a liquidity constrained smallholder-farmer that at every period faces
a random production cost shock and must decide on both consumption and production decisions.
At the start of each discrete production period n, the farmer observes the current market price
pn, exogenously fixed, and makes three decisions: the rate of consumption cn, the total amount
of land to expand ldn, and the total amount of productive inputs or technologies used per unit of
time and per unit of land, yn (henceforth we shall refer to this term as the productive expenditure
rate). The productive-expenditure may represent the total amount of certain inputs used (e.g,
fertilizer, pesticides, insecticides, or labor for preparing the field, planting, and weeding) or the
level of adoption of productive technologies (e.g., higher-yield seeds, increased water use), and is
characterized by having a concave increasing effect on the total yield.

Formally, consider the time interval [0,D] divided into production periods of length τ . Let the
n-th time period be the interval [(n− 1)τ,nτ ] (we assume for simplicity that D is a multiple of τ),
and let N := D

τ be the total number of periods. The timing of decisions is then as follows: at the
beginning of the n-th period (i.e., time (n− 1)τ), the farmer observes the market price pn, which
we assume comes from an exogenous random process, and that will be paid at the end of the n-th
production cycle (i.e., time nτ). Additionally, at the start of the n-th period, the farmer has a cash
position xn, and total productive land `n. At this time the farmer decides the consumption rate
per unit of time cn, the productive-expenditure rate yn ≥ 0, and the total land to expand during
period n, `dn. The productive-expenditure rate will generate a rate of production given by (yn)λ`n
during period n, for a fixed 0 ≤ λ ≤ 1. This leads to a total production of (yn)λ`nτ , during the
nth period. Although the land expansion occurs at the start of the period, the land expanded will
not become productive until the next period (i.e., time nτ). The total consumption during period
n will be cnτ . At the end of each period, the farmer receives a payment of (yn)λ`nτpn. The land
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expansion at the start of the period will have a total cost of (`dn)+d, where d is the combination of
the cost of clearing and making the new land productive. During period n, the farmer will face a
total production cost of

((yn)λWn + ynq)`nτ. (1)

Where q is the linear cost of the productive-expenditure yn (which we will refer to as the cost of
intensification), and Wn is a random production cost shock normally distributed with mean k and
variance σ2. Finally, we capture the lack of access to financial markets of the farmer by considering
interests (e−ατxn − 1) to be paid at the end of each period. A farmer can only incur debt (xn < 0)
by borrowing for one production cycle from within the community, and likewise can lend excess
money to the community members. The exponential function is capturing the increasing marginal
rates of borrowing (and decreasing marginal rates for lending). This leads to the following dynamics
for the farmer’s cash position:

xn+1 = xn + ((yn)λ`nτ)pn︸ ︷︷ ︸
production

revenue

− cnτ︸︷︷︸
consumption

− ((yn)λWn + qyn)`nτ︸ ︷︷ ︸
production

and intensification
costs

− (e−ατxn − 1)︸ ︷︷ ︸
interest payments

− (`dn)+d︸ ︷︷ ︸
deforestation

cost

(2)

Additionally, the land expansion decision `dn leads to the following land dynamics:

`n+1 = `n + `dn. (3)

Subject to these dynamics the farmer will maximize her expected discounted consumption:

E
[∫ D

0
e−τβcdt/τedt

]
= β̂E

N+1∑
n=1

e−nβτ cn. (4)

Where β̂ = 1−e−βτ
β , and the terminal condition is cN+1 = (xN+1− (e−ατxN+1 − 1))/τ , which corre-

sponds to the consumption of all the cash remaining net of interest payments. In the objective, β
represents the farmer’s discount rate. We refer to the farmer’s expected discounted consumption as
the farmer’s welfare.

2.1. Modelling Assumptions
Timing of farmer’s decisions. We assume that farmers decide on their consumption and

productive-expenditure rates, as well as the total amount of land they will clear at the start of each
period. This assumption not only helps with tractability, but is rooted in practice. Farmers often
make production and consumption decisions at the time of cash inflow (see e.g., Collins et al. 2009,
Duflo and Banerjee 2011).

Cleared-land production lag. The land cleared at the start of each period will only be considered
productive for the next period. This assumption captures the lag between starting to clear land and
harvesting from that land. This lag has two main sources: first, clearing land is usually done with
manual labor which takes a considerable amount of time (Ketterings et al. 1999), second, once the
crops are planted, the time until productive maturity may vary between 100 to 200 days for crops
such as maize and ginger (India-Agro-Net 2021a,b) to 42 months for perennial crops such as oil
palms (Verheye 2010). Although we are assuming, for simplicity of exposition, the lag to be of one
period, all our results can be readily extended to a fixed arbitrary lag T (i.e., `n+1 = `n+ `d(n+1)−T ).
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Production function. We consider the effect on the yield from a production-expenditure of y to
be (y)λ, for a fixed 0≤ λ≤ 1. This is in line with the notion of decreasing marginal returns that are
found in almost all production technologies. In particular, if we consider y to represent the total
rate of labor dedicated to production, by increasing the amount of labor, the farmer can increase
the total production, but the rate of increase per unit of labor will be decreasing (Shephard and
Färe 1974). If we consider y to represent the rate of fertilizer application, then the function yλ

captures the yield response curve, which has been thoroughly documented to be concave, and is
commonly estimated as a power function, with the most common exponents used being λ= 0.5 and
λ= 0.75 (Tilman et al. 2011, Bélanger et al. 2000, Cerrato and Blackmer 1990, Hagin 1960).

Production cost shocks. We consider random production cost shocks in (1) given by Wn(yn)λ`n.
A primary example of these random cost shocks is the delivery cost faced by many smallholders
in frontier regions, where roads are seldom paved, leading to highly increased costs when there is
enough rain to turn the dirt into mud. Additional random costs associated to bringing the product
to market may be linked to higher than expected labor costs at harvesting season.

Market price process. We assume that the market price received by the farmer, pn, is exogenously
determined. This is consistent with many situation in which farmers produce commodity products,
such as maize, oil-palm, or cocoa, where the price is mostly fixed by the international markets and
not affected by the farmer’s own production quantity. These settings are of particular importance,
as many of the major documented cases of tropical deforestation are linked to the production of
such crops (see Gatto et al. 2017 for a reference on oil-palm production in Indonesia, Bruun et al.
2017 for the case of maize production in the highlands of Thailand, and Kroeger et al. 2017 for
an account of deforestation in the Cocoa supply chain). We will assume that pn ≥ k, for every
n, this assumption avoids the case where production is trivially not sustainable. Additionally, we
will assume that E(pn+1|σ({pi}i≤n)) is increasing in pn. This implies that observing higher current
prices does not lead to lower expected prices in the future. This is consistent with a wide variety of
stochastic processes, including any Markovian price process, as well as any submartingale adapted
to σ({pi}i≤n).

Negative consumption. While we allow the farmer’s consumption cn to become negative (which
can be interpreted as farmers borrowing food from friends and family), we penalize this in the
farmer’s welfare function (4). This assumption is needed for tractability.

Exponential interest payments. Increasing interest rates for larger loans have been extensively
documented in the development literature (Duflo and Banerjee 2011, Collins et al. 2009, Ghosh
et al. 2000). We capture these increasing loan rates by using an exponential function e−ατxn . We
assume as well that no farmer would forgo current consumption in order to lend money and use
the interest earned in the future (i.e., α≤ (eβ − 1)/τ).

3. Results
Theorem 1 characterizes the farmer’s optimal policy.

Theorem 1. In each period n, the farmer will choose the following productive-expenditure and
consumption rates, as well as total land cleared:

`dn = (ˆ̀
n+1− `n)+, (5)

yn = y∗n(`n, pn) (6)

cn =
1

τ

(
xn + pn(y∗n)λ`nτ − (qy∗n + k(y∗n)λ)`nτ − (e−ατxn − 1)− (`d∗n )+d− g∗n

)
(7)



XW, DI, EP: Intensification vs. Deforestation
8 00(0), pp. 000–000, © 0000 INFORMS

Where g∗n = 1
ατ

(
(`n(y∗n)λαστ2)2/2− log( e

βτ−1
ατ )

)
, and y∗(`n, pn) solves:

(y∗)λ−1λ`nτ(pn− k)− (y∗)2λ−1λ`2nτ
3σ2α(1− e−βτ ) = q`nτ. (8)

A recursive expression for ˆ̀
n+1 can be found in Proposition 1.

The farmer’s best response is divided into three decisions per period, two production decisions
(yn, `dn), and one consumption decision (cn). Interestingly, the production decisions do not depend
on the cash position in period n, xn. This result can be shown to hold for any concave increasing
production function and any convex decreasing interest payment function.

The land expansion decision `dn follows a base-stock policy form, by which the farmers expand up
to a land target ˆ̀

n+1 (and do not expand at all if this target value is below the current amount of land
`n). This target ˆ̀

n+1 is defined in Proposition 1 in the Appendix as the land amount that equates
the expected marginal future value of land to the marginal land expansion cost d. It can be shown
that if we assume the lag until new land becomes productive to be T (i.e., `n+1 = `n + `d(n+1)−T ),

then the optimal land expansion in period n would be `d∗n = (ˆ̀
n+T − `n −

∑T−1
i=1 `dn−i), where the

target land ˆ̀
n+T would equate the marginal deforestation cost d to the expectation in period n of

the marginal value of land in all periods following the (n+T )-th period.
The optimal production-expenditure rate decision leads to a total production function that in-

creases with the price pn. Additionally, we show in 3 that the optimal production-expenditure
decreases with the marginal cost of intensification q and with the variance of the production cost
shock, σ2. This latter relationship can be explained through the high interest payments the farmers
face: higher levels of risk will induce lower levels of production intensification. This is consistent
with the literature on technological adoption and intensification (see, e.g., Joffre et al. (2018)).

The consumption decisions imply the farmer saves in expectation exactly up to g∗n, which is
increasing in the variance of the production cost shocks. This is consistent with the empirical
findings on agricultural risks and how they affect a farmer’s ability to obtain food security and
higher welfare levels (see e.g., Wolgin 1975). This is even more relevant than ever when facing
higher climate-change related risk (Harvey et al. 2014).

Theorem 2 shows how the farmer’s value function changes with the total amount of land, the
intensification cost, the expected cost of production, and the variation in this cost of production.

Theorem 2. The farmer’s value function Jn(xn, `n, pn) is increasing in `n, pn, and xn, and
decreasing in q, k, and σ2, for every n∈ {1, . . . ,N + 1}.

As expected, the farmer’s welfare is increasing in the total amount of land, the market price, and
the cash position, and decreasing in the cost of both the cost of intensification and the expected cost
of production. Moreover, the higher the variation of production costs, the lower the total welfare.

In Theorem 3 we show how the optimal production-expenditure levels change as a function of
the amount of land, the cost of intensification, and the variance of the production cost shocks.

Theorem 3. The farmer’s optimal production-expenditure level y∗n(`n, pn) is decreasing in σ2,
`n, q, α, and k.

We show that the production-expenditure exerted is decreasing in the production risk. High vari-
ability in production costs generate reduced consumption as well as a reduction in the total optimal
production. The more subtle insight we show in Theorem 3 is that the production-expenditure level
is decreasing in the amount of land: under liquidity constraints, the higher the amount of land, the
less farmers can invest in increasing the productivity per unit of land. Increased intensification cost
q would, as well, decrease the total production-expenditure rate, which is in line with all the liter-
ature on incentivizing technology adoptions and better farming processes, and forms the basis of
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most of the input-driven incentives and technological training incentives applied widely in practice
(see § 1.3 for an account of several such incentive programs).

Theorem 4 shows how the land-expansion decisions are affected by the expected production cost
shock, its associated variance, and the interest rate.

Theorem 4. The farmer’s deforestation decision `d∗n is decreasing in k, σ2, and α.

This result shows one of the key problems of most incentives schemes with the dual aim of
increasing farmer welfare and decreasing land-expansion: most factors that improve the former
increase the latter. This phenomenon has been described in the Economics literature as the Jevon’s
paradox, and indeed occurs frequently in practice (see Alcott 2005). In our model, we can see that
decreasing the expected cost of production k or the interest rate α imply an increase in deforestation
pressure. Additionally, we can see that at higher levels of variability, the deforestation pressure
is reduced. Not only does high variability of costs induce lower intensification, but it reduces as
well the amount of land cleared. The rationale for why this happens is similar to before: at higher
variability of production costs and faced with high interest rates for debt, farmers are less prone to
increase their total productive land.

In Theorem 5 we show that for low enough cost q, the land-expansion pressure is actually in-
creasing in q.

Theorem 5. There exist positive thresholds q̃Ln (`n) ≤ q̃Hn (`n) such that farmer f’s equilibrium
deforestation decision `d∗n is increasing in q for q ≤ q̃Ln (`n), and decreasing in q for q ≥ q̃Hn (`n).
Moreover, q̃Ln (`n) and q̃Hn (`n) are increasing in σ2, α, and `n.

This surprising result provides a clear insight into the contradicting empirical observations on
how intensification can affect deforestation (see §1.2 and § 1.3). While many subsidy programs
that reduced the cost of intensification did reduce the total deforestation, many other have had
the exact opposite effect. We demonstrate here that indeed the effect can go in both directions,
depending on context specific parameters. This threshold behavior is driven by the combination of
the liquidity constraint and the variable production costs. In particular, when reducing the cost of
intensification, there are two opposing forces acting on the deforestation pressure. One the one hand,
reducing q reduces the intensification cost and increases the equilibrium production-expenditure
y∗ (see Theorem 3), both of which makes each unit of land more valuable. On the other hand,
the increased intensification implies that each unit of land will produce a higher volume, which
leads to a higher variability in the production costs. Under the liquidity constraints, this increase
in total variability will induce a downward pressure on land expansion. The balance between these
two forces is characterized by the threshold behavior described in Theorem 5: when the variability
in production costs is high, q̃Ln (`n) will be high, and deforestation pressure will decrease when
decreasing q for any q smaller than q̃Ln (`n), but when the variability in production costs is low
compared to q, q will be above q̃Hn (`n), and decreasing q will incentivize deforestation.

Interestingly, Theorem 5 shows that the reducing the intensification cost q would not only cause
farmers that are “better off” to reduce deforestation. Because q̃Ln and q̃Hn are increasing in both
`n, and α, then both farmers with an already large productive land, and farmers that are more
liquidity constrained would reduce deforestation when their cost of intensification is reduced.

The threshold result in Theorem 5, together with the insight on the role that production cost
variability and liquidity constraints play, provide an explanation to the highly debated question of
whether intensification causes or prevents deforestation (see §1.2). To the best of our knowledge this
is the first result that presents the level of production cost risk paired with the liquidity constraints
as causes for the different answers to this question observed in practice.
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3.1. Discussion on different incentive schemes
From the results above, we can surmise the following insight.

Insight 1 The only non-conditional welfare improving interventions that can decrease deforestation
pressure are those that decrease the intensification cost when this cost is low enough.

This insight is a direct corollary of Theorems 2, 4, and 5, as any reduction of either the mean of
the random production cost or the variance would indeed improve the welfare of the farmer, but
would as well lead to an increase in the total land cleared. In contrast, when q, the intensification
cost is lower than the threshold q̃Ln , lowering this cost induces both an increase of welfare and an
increase of the protected forest. This insight is validated by the empirical evidence that links the
reduction in transportation costs with the increase of deforestation (see Geist and Lambin (2002)
for a global analysis of this, and Bruun et al. (2017) for an example of how the improved road
conditions facilitated the deforestation of the highlands in northern Thailand). This reenforces
the need for careful implementation of policies, because in most cases, well intentioned welfare-
improving policies can have devastating effects on the preservation of natural forests if not made
conditional on conservation goals.

4. Concluding Remarks
We have introduced a dynamic model of farmer operation that allowed us to study the effect of
intensification promotion on deforestation. In particular, we found that there exists a non mono-
tonic relationship between the intensification cost and the rate of deforestation: for low enough
intensification costs, decreasing the cost can reduce deforestation, while for large enough costs the
opposite is true. This adds a nuanced explanation to the already existing theories that try to ex-
plain the, empirically observed, varied relationship between intensification and deforestation. In
particular, our main result is driven by our consideration of random production cost shocks and
liquidity constrained farmers.

Our results reinforce the importance of careful study of each context before any policy imple-
mentation. Implementing a policy of intensification promotion in a setting where the average size
of plots is small, the variability in costs is low, and the intensification costs are already high, may
have negative effects on the forest protection. At the same time, implementing the same policy
in a region where there is high variability of costs, land sizes are not too small, and the cost of
intensification is not too high may actually reduce deforestation.

Finally, we believe these findings motivate future work that could empirically validate our results.
Namely, showing that in settings where the reduction of the cost of intensification led to higher
deforestation, the variability in costs was low enough to put the intensification cost above the
theoretical threshold. And conversely, that in settings where intensification reduced land-clearing,
that the intensification cost was indeed below the threshold. Estimating these thresholds in prac-
tice would require a careful collection of farm-level data, in order to understand the sources of
uncertainty in the costs, as well as estimating the model’s parameters.

References
Abman R, Carney C (2020) Agricultural productivity and deforestation: Evidence from input subsidies and

ethnic favoritism in malawi. Journal of Environmental Economics and Management 103:102342.

Akkaya D, Bimpikis K, Lee H (2021) Government interventions to promote agricultural innovation. Manufac-
turing & Service Operations Management 23(2):437–452, URL http://dx.doi.org/10.1287/msom.

2019.0834.

Alcott B (2005) Jevons’ paradox. Ecological economics 54(1):9–21.



XW, DI, EP: Intensification vs. Deforestation
00(0), pp. 000–000, © 0000 INFORMS 11

Alizamir S, Iravani F, Mamani H (2019) An analysis of price vs. revenue protection: Government subsidies in
the agriculture industry. Management Science 65(1):32–49, URL http://dx.doi.org/10.1287/mnsc.

2017.2927.

Angelsen A, Kaimowitz D (1999) Rethinking the causes of deforestation: lessons from economic models. The
world bank research observer 14(1):73–98.

Angelsen A, Kaimowitz D (2001) Agricultural technologies and tropical deforestation (CABi).

Angelsen A, van Soest D, Kaimowitz D, Bulte E (2001) Technological change and deforestation: a theoretical
overview. Agricultural technologies and tropical deforestation 19–34.

Aravindakshan S, Krupnik TJ, Amjath-Babu T, Speelman S, Tur-Cardona J, Tittonell P, Groot JC (2021)
Quantifying farmers’ preferences for cropping systems intensification: A choice experiment approach
applied in coastal bangladesh’s risk prone farming systems. Agricultural Systems 189:103069, ISSN
0308-521X, URL http://dx.doi.org/https://doi.org/10.1016/j.agsy.2021.103069.

Asfaw S, Shiferaw B, Simtowe F, Lipper L (2012) Impact of modern agricultural technologies on smallholder
welfare: Evidence from tanzania and ethiopia. Food Policy 37(3):283–295, ISSN 0306-9192, URL http:

//dx.doi.org/https://doi.org/10.1016/j.foodpol.2012.02.013.

Bouchery Y, Corbett CJ, Fransoo JC, Tan T (2016) Sustainable supply chains: A research-based textbook on
operations and strategy, volume 4 (Springer).

Boyabatlı O, Nasiry J, Zhou YH (2019) Crop planning in sustainable agriculture: Dynamic farmland
allocation in the presence of crop rotation benefits. Management Science 65(5):2060–2076, URL
http://dx.doi.org/10.1287/mnsc.2018.3044.

Bruun TB, de Neergaard A, Burup ML, Hepp CM, Larsen MN, Abel C, Aumtong S, Magid J, Mertz O
(2017) Intensification of upland agriculture in thailand: Development or degradation? Land Degradation
& Development 28(1):83–94, URL http://dx.doi.org/https://doi.org/10.1002/ldr.2596.

Bélanger G, Walsh JR, Richards JE, Milburn PH, Ziadi N (2000) Comparison of three statistical models
describing potato yield response to nitrogen fertilizer. Agronomy Journal 92(5):902–908, URL http:

//dx.doi.org/https://doi.org/10.2134/agronj2000.925902x.

Carlson K, Heilmayr R, Gibbs H, Noojipady P, Burns D, Morton D, Walker N, Paoli G, Kremen C (2018)
Effect of oil palm sustainability certification on deforestation and fire in indonesia. Proceedings of the
National Academy of Sciences 115(1):121–126.

Cerrato ME, Blackmer AM (1990) Comparison of models for describing; corn yield response to nitrogen
fertilizer. Agronomy Journal 82(1):138–143, URL http://dx.doi.org/https://doi.org/10.2134/

agronj1990.00021962008200010030x.

Chintapalli P, Tang CS (2018) The impact of crop minimum support prices on crop production and farmer
welfare. Available at SSRN 3262407 .

Collins D, Rutherford S, Morduch J (2009) Portfolios of the Poor (Princeton University Press).

Dawande M, Gavirneni S, Mehrotra M, Mookerjee V (2013) Efficient distribution of water between head-
reach and tail-end farms in developing countries. Manufacturing & Service Operations Management
15(2):221–238, URL http://dx.doi.org/10.1287/msom.1120.0414.

de Zegher JF, Iancu DA, Plambeck EL (2018) Sustaining smallholders and rainforests by eliminating payment
delay in a commodity supply chain—it takes a village Submitted to Management Science.

Djurfeldt G, Holmén H, Jirström M, Larsson R (2005) The African food crisis: lessons from the Asian Green
Revolution. (Wallingford, UK: CABI Publishing).

Duflo E, Banerjee A (2011) Poor Economics (New York City, NY: PublicAffairs).
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5. Proofs
We begin by proving a proof of Theorem 1.
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Proof of Theorem 1. Recall that the problem is divided into N + 1 periods of length τ , where
the n-th period corresponds to the time [(n− 1)τ,nτ). In the terminal period, N + 1, the farmer
consumes the remaining cash position net of interest payments. In the rest of the periods, the
farmer observes the price pn, total productive land `n, and current cash position xn, and decides on
the consumption rate cn, the production-expenditure rate yn, and the total deforestation amount
`dn. Let Jn(xn, `n, pn) denote the farmer’s value function at time n ∈ {1, . . . ,N + 1}. We show the
following Proposition that proves the desired result:

Proposition 1 For n∈ {1, . . . ,N + 1},

Jn(xn, `n, pn) =
β̂

τ
(xn + (1− e−αxn) + fn(pn, `n)), (9)

`dfn = (ˆ̀
n+1− `n)+, where ˆ̀

n+1 solves
e−βτ∂Enfn+1(pn+1, l)

∂l
= d, (10)

yn(pn) = y∗(`n, pn), (11)

cfn =
1

τ

(
xn + pn(y∗n)λ`nτ − (qy∗n + k(y∗n)λ)`nτ

− (e−ατxn − 1)− (`dn)+d− gn
)
,

(12)

where gn = 1
ατ

(
((`n)2(yn)2λα2σ2τ4)/2− log( e

βτ−1
ατ )

)
, β̂ = 1−e−βτ

β , fn(`n, pn) is concave and in-

creasing in `n and increasing in pn, the expectation En is taken conditional on the σ-algebra
σ({pi}i≤n,{Wi}i<n), and y∗(`n, pn) solves:

(y∗)λ−1λ`nτ(pn− k)− (y∗)2λ−1λ`2nτ
3σ2α(1− e−βτ ) = q`nτ. (13)

Proof of Proposition 1. We first show that for n=N +1, equation (9) holds. In this period, the
farmer no longer produces, and consumes at a constant rate cN+1 = (xN+1 − (e−ατxN+1 − 1))/τ ,
that leads to a value function that can be written as:

JN+1(xN+1, `N+1, pN+1) =

∫ τ

0

(
xN+1− (eατxN+1 − 1)

τ

)
e−βsds

=
1− e−βτ

βτ

(
xN+1− (e−βτxN+1 − 1)

)
,

that is consistent with equation (9), taking fN+1(pN+1, `N+1) = 0, which is constant and thus
concave increasing in `N+1 and increasing in pN+1.

We now proceed by induction in n, we assume the induction hypothesis for n+ 1, and consider
the farmer’s decision problem at time n. The farmer’s value to go function at time n is given by:

Jn(xn, `n, pn) = max
yn≥0,cn,`dn≥0

{
cn

∫ τ

0
e−βsds+ eβτEn [Jn+1(xn+1, pn+1(Pn+1), `n+1)]

}
= max
yn≥0,cn,`dn≥0

β̂

τ

{
cnτ + e−βτEn

[
xn+1− (e−αxn+1 − 1) + fn+1(`n+1, pn+1)

]}
Where the second inequality is due to the inductive hypothesis. Now, we will define the following

auxiliary variable:

gn = xn + pny
λ
n`nτ − cnτ − (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d,
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which, using the cash dynamics for the farmer imply that

cn =
1

τ
(xn + pny

λ
n`nτ − gn− (qyn + krn)`nτ − (e−ατxn − 1)− (`dn)+d),

xn+1 = gn− yλn`nτσεn,

with ε∼N(0,1). Using these identities, we can rewrite the value to go function at time n as

= max
yn≥0,gn,`dn≥0

β̂

τ

{
(xn + pny

λ
n`nτ − gn− (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d)

+ e−βτEn
[
xn+1− (e−ατxn+1 − 1) + fn+1(`n + `dn, pn+1)

]}
= max
yn≥0,gn,`dn≥0

β̂

τ

{
(xn + pny

λ
n`nτ − gn− (qyn + kyλn)`nτ − (e−ατxn − 1)− (`dn)+d)

+ e−βτEn
[
gn− yλn`nτσεn− (e−ατ(gn−yλn`nτσεn)− 1) + fn+1(`n + `dn, pn+1)

]}
=
β̂

τ

{
(xn− (e−ατxn − 1) + max

yn≥0,gn,`dn≥0
h(yn, `

d
n, gn)

}
Where

h(yn, `
d
n, gn) = yλn`nτpn− gn−(qyn + kyλn)`nτ − (`dn)+d

+ e−βτEn
[
gn− (e−ατ(gn−yλn`nτσεn)− 1) + fn+1(`n + `dn, pn+1)

]
.

= yλn`nτpn− gn−(qyn + kyλn)`nτ − (`dn)+d

+ e−βτ (gn− (e−ατgn+(αyλn`nτ
2σ)2/2− 1) +Enfn+1(`n + `dn, pn+1)).

This last equality follows from taking the Gaussian Moment Generating Function (recall that
ε∼N(0,1)):

En
[
(e−ατ(gn−rn`nτσεn)

]
= e−ατgn+(αyλn`nτ

2σ)2/2

We can separate h(yn, `
d
n, gn) into two functions,

h(yn, `
d
n, gn, `n, pn) = h1(yn, gn, `n, pn) +h2(`dn, `n, pn),

where

h1(yn, gn, `n, pn) = `nτ(yλn(pn− k)− ynq)− (1− e−βτ )gn− e−βτ (e−ατgn+(αyλn`nτ
2σ)2/2− 1),

h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1)− (`dn)+d.

By inductive hypothesis, we know that fn+1(`, pn+1) is concave and increasing in it’s first argument,
which implies that h2(`dn) is concave in `dn. Hence, we can take the first order conditions to maximize
h2(`dn):

∂h2(`d∗n , `n, pn)

∂`dn
= 0⇔ e−βτ∂Enfn+1(`n + `d∗n , pn+1)

∂`dn
= 1{`d∗n ≥0}d. (14)

From equation (14) we conclude that the optimal `dn must satisfy `dn = (ˆ̀
n+1 − `n)+, where ˆ̀

n+1

solves e−βτ∂Enfn+1(`,pn+1)
∂` = d. This proves equation (10).
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In order to optimize h2(yn, gn, `n, gn), we will begin by finding g∗n(yn). Notice that h2(yn, gn) is
concave in gn, because it is an affine function of gn minus a convex function of gn. Hence, we can
take the first order conditions on h1(yn, gn, `n, gn), with respect to gn, to obtain:

∂h1(yn, g
∗
n, `n, pn)

∂gn
= 0⇔ exp(−ατg∗n + (αyλn`nτ

2σ)2/2) =
eβτ

τα
. (15)

By using equation (15), we obtain g∗n = 1
ατ

(
(`2ny

2λ
n α

2σ2τ4)/2− log( e
βτ−1
ατ )

)
, proving (12). Now, we

can write h3(yn, `n, pn) = maxgn h
1(yn, g

∗
n(yn), `n, pn), as:

h3(yn, `n, pn) = `nτ(yλn(pn− k)− ynq)− (1− e−βτ )(
1

ατ

(
(`2ny

2λ
n α

2σ2τ4)/2− log(
eβτ − 1

ατ
)

)
)

− e−βτ (e−ατg
∗
n+(αyλn`nτ

2σ)2/2− 1)

(16)

= `nτ(yλn(pn− k)− ynq)− (1− e−βτ )

(
(`2ny

2λ
n ασ

2τ3)/2− 1

ατ
log(

eβτ − 1

ατ
)

)
− e−βτ

(
eβτ − 1

τα
− 1

)
.

Where the second equality uses the characterization in (15).
In order to maximize h3(yn, `n, pn), we begin by taking the first order conditions to find the

stationary point y∗n:

∂h3(y∗n, `n, pn)

∂yn
= 0⇔ (y∗)λ−1λ`nτ(pn− k)− (y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ ) = q`nτ. (17)

In order to show that y∗ is indeed a maximum of h3(yn, `n, pn), we show in Proposition 2 that
∂2h3(y∗n(`n,pn),`n,pn)

∂y2n
≤ 0, for all `n and pn, which proves (13), and gives an implicit characterization

of the optimal production-expenditure y∗n(`n, pn).
Putting together the results shown above, we can write

Jn(xn, `n, pn) =
β̂

τ

{
(xn− (e−ατxn − 1) +h3(y∗n(`n, pn), `n, pn) +h2(`d∗n (`n, pn), `n, pn)

}
(18)

=
β̂

τ

{
(xn− (e−ατxn − 1) + fn(`n, pn)

}
, (19)

where fn(`n, pn) = h3(y∗n(`n, pn), `n, pn) +h2(`d∗n (`n, pn), `n, pn). Therefore, to conclude the proof of
the proposition, we need only to show that fn(`n, pn) is concave and increasing in `n, and increasing
in pn. To show this, we begin by observing that

h2(`d∗n (`n, pn), `n, pn) = max
`dn

[Enfn+1(`n + `dn, pn+1)− (`dn)+d],

Where, by inductive hypothesis, h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1)− (`dn)+d is jointly concave
in both `n and `dn. Thus, because partial maximization of a jointly concave function preserves
concavity, h2(`d∗n (`n, pn), `n, pn) must be concave in `n. To show that it is increasing in `n, we
observe that max{`n, ˆ̀n+1} is increasing in `n, and (ˆ̀

n+1 − `n)+ is decreasing in `n, this together
with the inductive hypothesis gives us the results for h2(`d∗n (`n, pn), `n, pn). That it is increasing in
pn is a consequence of the inductive hypothesis and the fact that E(pn+1|σ({pi}i≤n)) is increasing
in pn.
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Finally, we need only to prove that h3(y∗n(`n, pn), `n, pn) is concave increasing in `n and increasing
in pn. We proceed by considering the first and second derivative of h3(y∗n(`n, pn), `n, pn) with respect
to `n, and the first derivative with respect to pn.

dh3(y∗n(`n, pn), `n, pn)

d`n
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

d`n
+
∂h3(y∗n(`n, pn), `n, pn)

∂`n

= τ((y∗n)λ(pn− k)− y∗nq)− (1− e−βτ )(`n(y∗n)2λασ2τ3)

=
y∗n
λ`n

[
τ`n((y∗n)λ−1λ(pn− k)−λq)− (1− e−βτ )λ(`2n(y∗n)2λ−1ασ2τ3)

]
=

y∗n
λ`n

[
τ`n(y∗n)λ−1λ(pn− k)− (1− e−βτ )λ(`2n(y∗n)2λ−1ασ2τ3)−λq`nτ

]
=
y∗nq`nτ(1−λ)

λ`n

=
y∗nqτ(1−λ)

λ
≥ 0.

The fourth equality above uses the implicit definition of y∗ (17).

dh3(y∗n(`n, pn), `n, pn)

dpn
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dpn
+
∂h3(y∗n(`n, pn), `n, pn)

∂pn

= τ`n(y∗n)λ ≥ 0.

This proves that h3(y∗n(`n, pn), `n, pn) is indeed increasing in `n and pn. Moreover, we see that
d2h3(y∗n(`n,pn),`n,pn)

d`2n
≤ 0 if and only if dy∗(`n,pn)

d`n
≤ 0, which we prove in Proposition 3. Therefore,

fn(`n, pn) is both increasing in `n and concave in `n, which completes the proof of the inductive
step. �

Proposition 2 Let h3(yn, `n, pn) be as defined in equation (16), and y∗(`n, pn) be the optimal

production-expenditure level as defined by (17), then ∂2h3(y∗n,`n,pn)
∂y2

≤ 0, for any `n ≥ 0 and pn.

Proof. First, let us compute the first derivative ∂h3(y∗n,`n,pn)
∂y :

∂h3(y, `n, pn)

∂y
= yλ−1λ`nτ(pn− k)− y2λ−1λ`2nτ

3σ2α(1− e−βτ )− q`nτ.

From here, we can compute the desired second derivative:

∂2h3(y∗n, `n, pn)

∂y2
= (y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ

3σ2α(1− e−βτ )

=
1

y∗n
[(y∗)λ−1(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ )]

=
1

y∗n
[(λ− 1)q`nτ − (y∗)2λ−1λ2`2nτ

3σ2α(1− e−βτ )]≤ 0.
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Where the first equality uses the fact that y∗ = 0 is not a solution to equation (17), as long

as q > 0 (and if q = 0, we consider the unique positive solution defined by
(

(pn−k)
`nτ2α(1−e−βτ )

) 1
λ

).

Additionally, the second equality uses the definition of y∗, that implies that (y∗)λ−1(λ−1)λ`nτ(pn−
k) = (λ−1)[y2λ−1λ`2nτ

3σ2α(1−e−βτ )+q`nτ ]. And finally, the last inequality stems from the simple
observation that λ≤ 1. �

Proposition 3 Let y∗n(`n, pn) be the optimal production-expenditure level, as defined by (17), then

y∗n(`n, pn) is decreasing in `n, i.e., dy∗(`n,pn)
d`n

≤ 0.

Proof. We compute the derivative of y∗n(`n, pn) with respect to `n, by using the Implicit Function
Theorem and the definition of y∗ in (17).

dy∗(`n, pn)

d`n
=−

∂2h3(y∗,`n,pn)
∂y∂`n

∂2h3(y∗,`n,pn)
∂y2

=−(y∗)λ−1λτ(pn− k)− (y∗)2λ−1λ2`nτ
3σ2α(1− e−βτ )− qτ

∂2h3(y∗,`n,pn)
∂y2

But, by Proposition 2, we know that ∂2h3(y∗,`n,pn)
∂y2

≤ 0, this implies that:

sign(
dy∗(`n, pn)

d`n
) = sign((y∗)λ−1λτ(pn− k)− (y∗)2λ−1λ2`nτ

3σ2α(1− e−βτ )− qτ)

= sign(
1

`n
[(y∗)λ−1λ`nτ(pn− k)− 2(y∗)2λ−1λ`2nτ

3σ2α(1− e−βτ ) − `nqτ)]

= sign(−(y∗)2λ−1λ`nτ
3σ2α(1− e−βτ )) by (17)

Which implies that dy∗(`n,pn)
d`n

≤ 0, proving the result. �
These propositions together finish the proof of Theorem 1. �

We proceed to prove Theorem 2.

Proof of Theorem 2. As a consequence of the characterization proven in Theorem 1, and
fn(`n, pn) being increasing in `n and pn for every n ∈ {1, . . . ,N + 1}, we have that Jn(xn, `n, pn)
must be increasing in `n and pn. Moreover, due to this same characterizations, Jn(xn, `n, pn) is
increasing in xn if and only if xn + (1− e−αxn) is increasing in xn, which can be seen by simple
inspection. We need then only to prove that the value function is decreasing in q, k, and σ2. We
proceed to show by backwards induction in n that

∂Jn(xn, `n, pn)

∂k
≤ 0,

∂Jn(xn, `n, pn)

∂q
≤ 0,

∂Jn(xn, `n, pn)

∂σ2
≤ 0.

When n = N + 1, then JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1− (e−βτxN+1 − 1)

)
, which implies that

∂JN+1(xN+1,`N+1,pN+1)
∂k =

∂JN+1(xN+1,`N+1,pN+1)
∂α =

∂JN+1(xN+1,`N+1,pN+1)
∂σ2 = 0.
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Now we proceed by assuming that the result holds for n+ 1, and proving that it must hold for
n. Using the characterization shown in (18) in the proof of Proposition 1, we can write the value
function at time n as:

Jn(xn, `n, pn) =
β̂

τ

{
(xn− (e−ατxn − 1) +h3(y∗n(`n, pn), `n, pn) + max

`dn≥0
h2(`dn, `n, pn)

}
,

where

h3(y∗n(`n, pn), `n, pn) = `nτ(y∗n)λ(pn− k)− y∗nq)− (1− e−βτ )(`2n(y∗n)2λασ2τ3)/2

− 1

ατ
log(

eβτ − 1

ατ
)− e−βτ (

eβτ

τα
− 1),

h2(`dn, `n, pn) = Enfn+1(`n + `dn, pn+1)− (`dn)+d.

Hence, if we wish to take the derivative of the value function with respect to the parameters k, q,
and σ2, we need only consider the derivatives of h3(y∗n(`n, pn), `n, pn), and max`dn≥0 h

2(`dn, `n, pn).
Let us begin by considering the latter:

∂max`dn≥0 h
2(`dn, `n, pn)

∂k
=
∂max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂k

=
∂Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂k
(`d∗n , `n, pn)

Using
Envelope
Theorem.

=En
∂fn+1(`n + `dn, pn+1)

∂k
(`d∗n , `n, pn)≤ 0.

Where the second equality is an application of the Envelope Theorem (see Milgrom and Segal
2002), and the final inequality comes from the inductive hypothesis. The same arguments prove
that max`dn≥0 h

2(`dn, `n, pn) must be decreasing in q and σ2. It only remains to be seen that the same

is true for h3(y∗n(`n, pn), `n, pn).

dh3(y∗n(`n, pn), `n, pn)

dk
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dk
+
∂h3(y∗n(`n, pn), `n, pn)

∂k
,

=−`nτ(y∗n)λ ≤ 0,

dh3(y∗n(`n, pn), `n, pn)

dq
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dq
+
∂h3(y∗n(`n, pn), `n, pn)

∂q
,

=−`nτ(y∗n)≤ 0,

dh3(y∗n(`n, pn), `n, pn)

dσ2
=
∂h3(y∗n(`n, pn), `n, pn)

∂y︸ ︷︷ ︸
0, by definition of y∗

dy∗n(`n, pn)

dσ2
+
∂h3(y∗n(`n, pn), `n, pn)

∂σ2
,
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=−1

2
`2nτ

3α(1− e−βτ )(y∗n)2λ ≤ 0.

Where all the inequality above are readily apparent. This shows that the derivative of the value
function with respect to k, σ2, and q must be negative for n, and thus concludes the inductive
proof. �

Now we will prove Theorem 3, by using the same logic as in Proposition 3.

Proof of Theorem 3. We wish to see that the optimal production-expenditure rate y∗n(`n, pn) as
defined by (17), is decreasing in `n, q, k, α, and σ2. First, notice that Proposition 3 proves already
the first result. Following the same reasoning, we will compute

dy∗(`n, pn)

dq
=−

∂2h3(y∗,`n,pn)
∂y∂q

∂2h3(y∗,`n,pn)
∂y2

=− −`nτ
∂2h3(y∗,`n,pn)

∂y2

=
`nτ

∂2h3(y∗,`n,pn)
∂y2

≤ 0.

Where, the numerator is always positive and the denominator was proven to be negative in
Proposition 2. We similarly compute the derivative of the optimal production-expenditure rate with
respect to interest rate α and expected production cost k:

dy∗(`n, pn)

dα
=−

∂2h3(y∗,`n,pn)
∂y∂α

∂2h3(y∗,`n,pn)
∂y2

=−−`
2
nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

=
`2nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

≤ 0.

dy∗(`n, pn)

dk
=−

∂2h3(y∗,`n,pn)
∂y∂k

∂2h3(y∗,`n,pn)
∂y2

=−−`nτλ(y∗n)λ−1

∂2h3(y∗,`n,pn)
∂y2

=
`2nτ

3σ2λ(1− e−βτ )(y∗n)2λ−1

∂2h3(y∗,`n,pn)
∂y2

≤ 0.
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And, as before, we see that the numerator is always positive while the denominator is always
negative. Finally, we compute the derivative with respect to σ2:

dy∗(`n, pn)

dσ2
=−

∂2h3(y∗,`n,pn)
∂y∂σ2

∂2h3(y∗,`n,pn)
∂y2

=−−(y∗)2λ−1λ`2nτ
3α(1− e−βτ )

∂2h3(y∗,`n,pn)
∂y2

=
(y∗)2λ−1λ`2nτ

3α(1− e−βτ )
∂2h3(y∗,`n,pn)

∂y2

≤ 0.

Where, as before, the numerator is always positive and the denominator is always negative. This
proves that the optimal production-expenditure rate is decreasing in `n, q, and σ2.

�

We will now state and prove modularity results on Jn(xn, `n, pn) that will allow us to prove
Theorem 4.

Proposition 4 The value function Jn(xn, `n, pn) is sub-modular in (`n, α), (`n, k), and (`n, σ
2),

for every n∈ {1, . . . ,N + 1}.

Proof. We will proceed to show by backwards induction in n that

∂2Jn(xn, `n, pn)

∂`n∂k
≤ 0,

∂2Jn(xn, `n, pn)

∂`n∂α
≤ 0,

∂2Jn(xn, `n, pn)

∂`n∂σ2
≤ 0.

When n = N + 1, then JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1− (e−βτxN+1 − 1)

)
, which implies that

∂2JN+1(xN+1,`N+1,pN+1)
∂`N+1∂k

=
∂2JN+1(xN+1,`N+1,pN+1)

∂`N+1∂α
=

∂2JN+1(xN+1,`N+1,pN+1)
∂`N+1∂σ2 = 0. Now, as in the proof

of Theorem 2, we proceed with the inductive step assuming the inductive hypothesis for n + 1
and using the characterization of the value function shown in (18). Following the argument in the
proof of Theorem 2, it suffices to show that h3(y∗n(`n, pn), `n, pn) and max`dn≥0 h

2(`dn, `n, pn) are both

sub-modular in (`n, α), (`n, k), and (`n, σ
2). For this, we consider the crossed derivatives and show

that they are negative:

∂2 max`dn≥0 h
2(`dn, `n, pn)

∂`n∂k
=
∂2 max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂k

=
∂2Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂k
(`d∗n , `n, pn)

Using
Envelope
Theorem.

=En
∂2fn+1(`n + `dn, pn+1)

∂`n∂k
(`d∗n , `n, pn)≤ 0.
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Where the second equality is an application of the Envelope Theorem and the last inequality is due
to the inductive hypothesis. This same argument can be made for (`n, α), and (`n, σ

2). Thus, we
need only to show that the crossed derivatives of h3(y∗n(`n, pn), `n, pn) are negative. In the proof of
Theorem 1 we have already shown that

dh3(y∗n(`n, pn), `n, pn)

d`n
=
y∗nqτ(1−λ)

λ
≥ 0.

This implies that d2h3(y∗n(`n,pn),`n,pn)
d`ndk

≤ 0 if and only if dy∗n(`n,pn)
dk ≤ 0, and equivalently for α, and σ2.

But we have already shown that this is the case in proving Theorem 3. Hence, we have Jn(xn, `n, pn)
is sub-modular in (`n, k), (`n, α), and (`n, σ

2), proving the inductive step and the proposition. �

We now prove Theorem 4 using the modularity results from Proposition 4.
Proof of Theorem 4. In Proposition 1, we prove that `d∗n = (ˆ̀

n+1 − `n)+, where ˆ̀
n+1 solves

e−βτ∂Enfn+1(`,pn+1)
∂` = d. Additionally, in Proposition 4, we showed that Jn(xn, `n, pn) is sub-modular

in (`n, k), (`n, q), and (`n, σ
2), that by the characterization proven in Proposition 1 implies that

fn(`n, pn) is as well for every n∈ {1, . . . ,N +1}. Therefore, a simple application on Topkis’ theorem
(Topkis 1998) shows that ˆ̀

n+1 must be decreasing in k, α, and σ2 for n∈ {1, . . . ,N}, which implies
that `d∗n is decreasing for n∈ {1, . . . ,N}. Finally, `dN+1 is always zero by definition, which concludes
the proof that `d∗n is decreasing in k, α, and σ2, for n∈ {1, . . . ,N + 1}.

�

In order to prove Theorem 5, we proceed to show that the modularity of Jn(xn, `n, pn), with
respect to (`n, q) has the same threshold behavior.

Proposition 5 There exists positive functions q̃Hn (`n) and q̃Ln (`n) such that the value function
Jn(xn, `n, pn) is super-modular in (`n, q), for q ≤ q̃Ln (`n), and sub-modular in (`n, q), for q >
q̃Hn (`n) for every n∈ {1, . . . ,N + 1}. Moreover, q̃Hn (`n) and q̃Hn (`n) are increasing in `n, σ2, and α.

Proof. As in the proof of Proposition 4, we will proceed by backwards induction in n to show
that there exists a q̃(`n) such that

∂2Jn(xn, `n, pn)

∂`n∂q
≥ 0, if q≤ q̃Ln (`n),

and
∂2Jn(xn, `n, pn)

∂`n∂q
≤ 0, if q≥ q̃Hn (`n).

Moreover, q̃Hn (`n) and q̃Ln (`n) are increasing in `n, σ2, and α.

When n = N + 1, JN+1(xn, `n, pn) = 1−e−βτ
βτ

(
xN+1− (e−βτxN+1 − 1)

)
, which implies that

∂2JN+1(xN+1,`N+1,pN+1)
∂`n∂q

= 0. We proceed then to the inductive step, where we will assume the result
holds for n+ 1.

Using the characterization shown in (18), we can see that it suffices to prove that
h3(y∗n(`n, pn), `n, pn) and max`dn≥0 h

2(`dn, `n, pn) both satisfy the desired property. In particular,

∂2 max`dn≥0 h
2(`dn, `n, pn)

∂`n∂q
=
∂2 max`+nd≥0 Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂q

=
∂2Enfn+1(`n + `dn, pn+1)− (`dn)+d

∂`n∂q
(`d∗n , `n, pn)

Using
Envelope
Theorem.
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=En
∂2fn+1(`n + `dn, pn+1)

∂`n∂q
(`d∗n , `n, pn).

Which, by the inductive hypothesis implies that
∂2 max

`dn≥0
h2(`dn,`n,pn)

∂`n∂q
≥ 0,

if q≤ q̃Ln+1(max{`n, ˆ̀n+1}), and
∂2 max

`dn≥0
h2(`dn,`n,pn)

∂`n∂q
≤ 0, if q≥ q̃Hn+1(max{`n, ˆ̀n+1}).

Now we need only to show that the same happens for d2h3(y∗n(`n,pn),`n,pn)
d`ndq

. We have already shown
in the proof of Proposition 1 that

dh3(y∗n(`n, pn), `n, pn)

d`n
=
y∗nqτ(1−λ)

λ
≥ 0.

Thus, we can compute

dh3(y∗n(`n, pn), `n, pn)

d`ndq

=
τ(1−λ)

λ

(
dny

∗(`n, pn)

dq
q+ y∗n(`n, pn)

)
=
τ(1−λ)

λ

(
q`nτ

(y∗n)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

+ y∗n

)
.

Where the second equality uses the expression for dy∗

dq proven in Theorem 3 (combined with the

explicit form of ∂2h3(y∗n(`n,pn),`n,pn)
∂y2

shown in Proposition 2).The first fraction is always positive

(when λ≤ 1), which means we can analyze the sign of the crossed derivative above by looking at
the sign of the expression in the parenthesis.

q`nτ

(y∗n)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

+ y∗n =

=
q`nτ + y∗n((y∗n)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−2λ`2nτ

3σ2α(1− e−βτ ))

(y∗n)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )

As proven in Proposition 2, the denominator will always be negative. This implies that

sign(
dh3(y∗n(`n, pn), `n, pn)

d`ndq
)

=−sign(q`nτ + y∗n((y∗n)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−2λ`2nτ
3σ2α(1− e−βτ )))

=−sign(q`nτ + ((y∗n)λ−1(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n)2λ−1λ`2nτ
3σ2α(1− e−βτ )))

=−sign(q`nτ + ((λ− 1)q`nτ −λ2(y∗n)2λ−1`2nτ
3σ2α(1− e−βτ ))) by (13)

=−sign(q`nτλ−λ2(y∗n)2λ−1`2nτ
3σ2α(1− e−βτ )))

=−sign(q−λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ ))

=sign(λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ )− q)

Consider then the function s(q) = λ(y∗)2λ−1`nτ
2σ2α(1−e−βτ )−q. We show that this function has

exactly one zero, and that it takes positive values for q lower than this zero and negative values for
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higher qs. On one hand, s(0)≥ 0, because y∗ ≥ 0. In fact, it is easy to see that at q= 0, (17) the only

non-zero solution is y∗ =
(

(pn−k)
`nτ2α(1−e−βτ )

) 1
λ

. On the other hand, we can see that limq→∞ s(q) =−∞.

To show this, consider

s(q) = λ(y∗n)2λ−1`nτ
2σ2α(1− e−βτ )− q

=
(y∗n)λ−1

`nτ

(
λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )− q`nτ(y∗)1−λ
)

=
(y∗n)λ−1

`nτ

(
λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )−
(
λ`nτ(pn− k)−λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )
))

by (17)

=
(y∗n)λ−1

`nτ︸ ︷︷ ︸
lim
q→∞

(y∗n)λ−1 =∞

(
2λ(y∗n)λ`2nτ

3σ2α(1− e−βτ )−λ`nτ(pn− k)
)

︸ ︷︷ ︸
lim
q→∞

(y∗n)λ = 0

Hence, s(q) can be written as the product of two expressions, one converges to infinity and the
other one to −λ`nτ(pn− k)≤ 0. We can see that lim

q→∞
(y∗n)λ−1 =∞ by taking the limit as q grows

to infinity of equation (17):

∞= lim
q→∞

q`nτ = lim
q→∞

(y∗n)λ−1
(
λ`nτ(pn− k)− (yλ)λ`2nτ

3σ2(1− e−βτ )
)

Therefore, lim
q→∞

s(q) =−∞. This implies that there must exist at least one point q̂zn that satisfies

s(q̂zn) = λ(y∗n(q̂zn))2λ−1`nτ
2σ2α(1− e−βτ )− q̂zn = 0. (20)

We show this point must be unique, by showing that at every such point s′(q̂zn)≤ 0.

ds(q̂zn)

dq
= λ(2λ− 1)(y∗n(q̂zn))2λ−2dy

∗
n(q̂zn)(`n, pn)

dq
`nτ

2σ2α(1− e−βτ )− 1

=
λ(2λ− 1)(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )

(y∗n(q̂zn))λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n(q̂zn))2λ−2λ`2nτ
3σ2α(1− e−βτ )

− 1

=
(y∗n(q̂zn))λ−2(1−λ)λ`nτ(pn− k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )

(y∗n(q̂zn))λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗n(q̂zn))2λ−2λ`2nτ
3σ2α(1− e−βτ )

We know by Proposition 2 that the denominator will always be negative, hence, we have that:

sign
(ds(q̂zn)

dq

)
=−sign

(
(y∗n(q̂zn))λ−2(1−λ)λ`nτ(pn− k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−2`2nτ

3σ2α(1− e−βτ )
)

=−sign
(

(y∗n(q̂zn))−1[(y∗n(q̂zn))λ−1(1−λ)λ`nτ(pn− k)

+ 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )]

)
=−sign

(
(y∗n(q̂zn))λ−1(1−λ)λ`nτ(pn− k) + 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)
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=−sign
(

(1−λ)[q̂zn`nτ +λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )]

+ 2(2λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )

)
=−sign

(
(1−λ)q̂zn`nτ + (3λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)

=−sign
(

(1−λ)λ(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ ) + (3λ− 1)λ(y∗n(q̂zn))2λ−1`2nτ

3σ2α(1− e−βτ )
)

by (20)

=−sign
(

2λ2(y∗n(q̂zn))2λ−1`2nτ
3σ2α(1− e−βτ )

)
And because this last expression is always positive, we have that s′(q̂zn)≤ 0, that implies that there
can only be one such zero.

We have shown that dh3(y∗n(`n,pn),`n,pn)
d`ndq

is positive when q≤ q̂zn, and negative when q≥ q̂zn. There-
fore, taking

q̃Hn (`n) = max{q̃Hn+1(max{`n, ˆ̀n+1}), q̂zn}, (21)

q̃Ln (`n) = min{q̃Ln+1(max{`n, ˆ̀n+1}), q̂zn}, (22)

satisfies the conditions, because if q ≤ q̃Ln (`n), both dh3(y∗n(`n,pn),`n,pn)
d`ndq

and
∂2 max

`dn≥0
h2(`dn,`n,pn)

∂`n∂q
are

positive, and if q≥ q̃Hn (`n), they are both negative.
Finally, because we assumed by the induction hypothesis that tildeqHn+1(`n) and q̃Ln+1(`n) are

increasing in `n, α, and σ2, we need only to check that q̂zn is increasing in these three parameters to
complete the induction. Thus, we take the derivatives of this expression using the implicit function
theorem:

dq̂zn
d`n

=−
ds(q̂zn)
d`n
ds(q̂zn)
dq

.

We showed above that ds(q̂zn)
dq ≤ 0, which means that sign(dq̂

z
n

d`n
) = sign(ds(q̂

z
n)

d`n
), but

ds(q)

d`n
= τ2σ2α(1− e−βτ )

d(y∗)2λ−1`n
d`n

= τ2σ2α(1− e−βτ )

(
`n(2λ− 1)(y∗)2λ−2dy

∗

d`n
+ (y∗)2λ−1

)
.

Which implies that

sign(
dq̂zn
d`n

)

= sign(
ds(q)

d`n
)

= sign(`n(2λ− 1)(y∗)2λ−2dy
∗

d`n
+ (y∗)2λ−1)

= sign(`n(2λ− 1)
dy∗

d`n
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
`n(2λ− 1)(y∗)2λ−1λ`nτ

3σ2α(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Prop. 3
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= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn− k)

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

).

The final expression is always positive, because the denominator is exactly ∂2h3(y∗n(`n,pn),`n,pn)
∂y2

, which
we proved in Proposition 2 to be negative, and the numerator is always negative when λ≤ 1.

Similarly, we can compute:

sign(
dq̂zn
d`n

)

= sign(
ds(q)

dα
)

= sign(α(2λ− 1)(y∗)2λ−2dy
∗

dα
+ (y∗)2λ−1)

= sign(α(2λ− 1)
dy∗

dα
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
α(2λ− 1)(y∗)2λ−1λ`2nτ

3σ2(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Theo. 3

= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn− k)

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

),

and

sign(
dq̂zn
d`n

)

= sign(
ds(q)

dσ2
)

= sign(σ2(2λ− 1)(y∗)2λ−2 dy
∗

dσ2
+ (y∗)2λ−1)

= sign(σ2(2λ− 1)
dy∗

dσ2
+ y∗) ((y∗)2λ−2 ≥ 0)

= sign(
σ2(2λ− 1)(y∗)2λ−1λ`2nτ

3α(1− e−βτ )

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

+ y∗) by Theo. 3

= sign(
(y∗)λ−1(λ− 1)λ`nτ(pn− k)

[(y∗)λ−2(λ− 1)λ`nτ(pn− k)− (2λ− 1)(y∗)2λ−2λ`2nτ
3σ2α(1− e−βτ )]

).

Where in both cases we obtain the same expression as before, which is always positive. This proves
that the thresholds are always increasing in `n, α, and σ2, and concludes the inductive proof of the
proposition. �

Proof of Theorem 5 Using the same arguments as in the proof of Theorem 4, and the modularity
results proven in Proposition 5, we obtain the proof of this Theorem. �


