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Effective preparation for future pandemics requires a clear understanding of how best to deploy non-

pharmaceutical interventions, especially population confinements. Experience during COVID-19 shows that

many jurisdictions tailor confinements by population group or by activity, yet such targeting is opera-

tionally demanding and politically sensitive, making rigorous cost–benefit quantification indispensable. We

develop a modeling framework in which confinements can be targeted along two dimensions—age group and

activity—to minimize a composite loss that combines mortality and foregone economic output. A stylized,

analytically tractable version of the model yields closed-form optimal confinement rules and conditions that

reveal when targeting generates welfare gains, and clarifies how these gains depend on key epidemiological

and economic parameters. We find that targeting yields gains in certain L-shaped parameter regions, and

gains behave non-monotonically in parameters. To translate these insights into practice and quantify their

impact, we introduce a structured optimization procedure that couples model-predictive-control techniques

with trust-region methods to derive high-quality solutions. A full-scale implementation for COVID-19 in

Île-de-France demonstrates that targeting by age or by activity delivers Pareto improvements relative to

non-targeted, uniform policies; and targeting along both dimensions delivers Pareto improvements relative to

targeting along just one. We extend the model and the algorithm to deal with ambiguity in problem param-

eters through a distributionally-robust approach; we find that gains from targeting persist under parameter

ambiguity and surprisingly, more ambiguity can increase these gains. Applying a structured optimization

approach to derive optimized targeted confinements can therefore be highly beneficial even in the early stages

of a pandemic, when estimates of epidemiological parameters are unreliable.

1. Introduction
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Following the COVID-19 crisis, policymakers have refocused their attention on strengthening pre-

paredness and response for future pandemics (Khor and Heymann 2021, Sirleaf and Clark 2021).

The COVID-19 experience has underscored the pivotal contribution of non-pharmaceutical inter-

ventions—most notably, large-scale population confinement—in curbing transmission during the

critical period before effective therapies and vaccines become available (Group et al. 2023). Design-

ing such confinement policies requires recognizing that individuals engaged in different activities

generate markedly heterogeneous health and economic externalities. Tailoring restrictions to this

heterogeneity offers a powerful lever for reducing overall societal harm, yet it also raises concerns

about equity and the potential for discriminatory implementation. To inform decision-making in

the early stages of an emerging epidemic, we develop a quantitative framework that evaluates the

benefits of targeted interventions and illustrate it with a detailed empirical case study.

Targeting has been implemented in several different ways during the COVID-19 pandemic. One

real-world contentious example has been to differentiate confinements based on age groups, e.g.,

sheltering older individuals who might face higher health risks if infected, or restricting younger

groups who might create higher infection risks. Such measures have been implemented in several

settings—e.g., with stricter confinements applied to older groups in Finland (Tiirinki et al. 2020),

Ireland (Harrison 2020), Israel (Magid 2020) and Moscow (Foy 2020), or curfews applied to children

and youth in Bosnia and Herzegovina (Reuters Staff 2020) and Turkey (Kanbur and Ankgül 2020)—

but some of the measures were deemed ageist and unconstitutional and were eventually overturned

(Magid 2020, Reuters Staff 2020).

A different example of targeting extensively employed in practice has been to tailor confinements

to specific activities conducted during a typical day. This has been driven by the recognition that

different activities (or more specifically, population interactions in locations of certain activities)

such as work, schooling, transport or leisure can result in significantly different patterns of social

contacts and new infections. This heterogeneity has been recognized in numerous implementations

that differentially confine activities through restrictions of varying degrees on schools, workplaces,
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recreation venues, retail spaces, etc. Additionally, some practical implementations even differen-

tiated based on both age groups and activities, e.g., by setting aside dedicated hours when only

the senior population was allowed to shop at supermarkets (Aguilera 2020), or by restricting only

higher age groups from in-person work activities (Magid 2020).

As these examples indicate, targeted interventions offer significant advantages yet also entail

noteworthy risks. When carefully calibrated, they can improve both health and economic outcomes,

giving policymakers a more nuanced lever for navigating difficult trade-offs. Nevertheless, such fine-

grained measures are harder to operationalize—especially in the early stages of a new pandemic,

when key epidemiological parameters are uncertain and high-resolution data are scarce—and they

may engender perceptions of inequity or even outright discrimination.

Because many real-world pandemic policies already incorporate some degree of targeting, it is

crucial to model such measures transparently and to quantify both their benefits and their potential

drawbacks as we prepare for future outbreaks. This prompts several natural research questions.

First, to what extent can progressively finer targeting improve health and economic outcomes,

and through what mechanisms are these improvements realized? Second, how do the gains from

targeting vary with key epidemiological parameters such as the basic reproduction number R0 and

the infection fatality rate? Third, when decision makers face substantial uncertainty about such

parameters, as is typical in the early stages of an epidemic, should they abandon targeting in favor

of simpler uniform policies, or can targeting still confer meaningful gains despite the ambiguity?

1.1. Contributions

This study makes two core contributions. First, it offers policy-relevant insights into whether, and

under what conditions, targeted confinement strategies can reduce the combined health and eco-

nomic costs of a future pandemic relative to more uniform restrictions. Second, it introduces a

quantitative framework, together with accompanying computational tools, that enables policymak-

ers to operationalize these strategies and rigorously quantify their benefits. To elaborate, we make

the following specific contributions.
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1. Model for targeted interventions. We anchor our analysis around an optimization model

for targeted interventions, which we embed within a multi-period, multi-group SEIR epidemi-

ological model that differentiates policies based on both population groups and activities, and

balances the lost economic value with the cost of deaths.

2. Simplified theoretical model for stylized insights. To assess whether targeting can gen-

erate welfare gains, we first analyze a stylized, analytically tractable model that collapses the

pandemic evolution into two stages, while still accommodating all dimensions of heterogeneity

that interest us. Within this framework, we derive closed-form optimal confinement rules: high

activity levels are allowed for groups in activities with the largest ratio of (i) the net economic

value they would generate if kept fully open—namely, their intrinsic economic output minus

the externality death cost imposed on other groups at those groups’ prevailing activity lev-

els—to (ii) their own intra-group mortality cost. The model further pinpoints the parameter

regimes in which targeting improves outcomes and shows how these regimes shift with key

epidemiological factors and with the policymaker’s relative weight on mortality versus eco-

nomic losses. To the best of our knowledge, these are the first theoretical results that jointly

characterize group- and activity-based targeted confinements.

3. Optimization framework for quantifying gains. Although the stylized model yields

valuable conceptual insights, it cannot capture the full complexity of multi-period pandemic

dynamics or quantify the magnitude of targeting gains in realistic environments. To bridge

this gap, we develop a structured optimization framework for the full model that operational-

izes the theoretical prioritization rule and enables quantitative evaluation with empirical data.

The framework integrates publicly available information with a robust-optimization formu-

lation that explicitly accounts for parameter ambiguity. Because the resulting problem is

highly non-convex, we introduce a novel solution method—Re-Optimization with Linearized

Dynamics (ROLD)—which couples a model-predictive-control linearization with trust-region

refinements to generate high-quality policies in real time. We apply ROLD in a detailed case
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study of COVID-19 in Île-de-France (a region surrounding Paris, with 12 million inhabitants)

and in additional scenarios involving other pandemics and geographies, thereby confirming

the theoretical predictions and quantifying the potential gains from targeted confinement.

Insights for policymakers. From our findings, we synthesize the following messages for how

policymakers should approach targeting:

1. The magnitude—and even the existence—of welfare gains from targeting hinges on the val-

ues of epidemiological parameters and on the relative importance that policymakers place

on economic and mortality losses. Gains exist only inside an L-shaped region of the (R0, χ)

parameter space, where R0 is the basic reproduction number and χ is the cost/weight that

a policymaker places on a death. An analogous L-shaped frontier arises when R0 is replaced

by a group-specific disease progression parameter such as the infection fatality rate. Outside

this region, a uniform, non-targeted policy is optimal; inside the region, interpretable con-

ditions involving key epidemiological and economic parameters identify those age groups or

activities prioritized for confinement and the gains from targeting can be significant, but the

gains are also non-monotonic in problem parameters. To assess whether a specific situation

calls for targeting and to quantify the gains from targeting therefore requires use of rigorous

optimization-based approaches.

2. Using our ROLD algorithmic framework, we find that optimized targeted confinements can

produce large gains. In our Île-de-France case study, even policies that target only based on

age group or only based on activity already yield Pareto improvements over a uniform, non-

targeted baseline: they lower aggregate economic losses without increasing pandemic fatalities.

However, neither policy Pareto-dominates the other, and the choice between age group and

activity-based targeting is subtle: our theoretical and empirical results suggest that activity-

based targeting can be more effective at low-to-moderate basic reproduction numbers R0 and

when policy makers place a large weight χ on mortality losses, whereas age-based targeting

is more effective at high reproduction numbers R0 and low-to-moderate weight χ placed on
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mortality losses. Crucially, targeting both age groups and activities goes further, Pareto-

dominating every alternative that targets only one dimension.

3. The value of targeting persists even when there is uncertainty about important model param-

eters. Moreover, the common intuition that greater ambiguity should tilt policymakers toward

uniform, non-targeted rules fails: as ambiguity levels rise, the welfare gains from targeting

also rise in some important regions of the parameter space. Consequently, even in the early

stages of an outbreak—when estimates of transmission, fatality, or other disease dynamics

are most unreliable—optimized targeted confinement can still outperform uniform restrictions

and deliver substantial benefits.

The paper is organized as follows. Section 2 reviews relevant literature. Section 3 describes our

baseline pandemic model and formulates the underlying targeting problem. Section 4 presents the

stylized version of the model and extracts theoretical insights. Section 5 then describes the ROLD

algorithm to solve the more complex, general model. Section 6 documents our Île-de-France case

study and the gains from targeting using ROLD. Section 7 extends our model and ROLD algorithm

to a robust formulation that accounts for parameter ambiguity. Lastly, Section 8 concludes with

a discussion. The Appendix provides modeling details (EC.1,EC.2), details and proofs for the

theoretical results (EC.3), algorithmic details for ROLD (EC.4, EC.5), the parametrization for the

empirical case study (EC.6), and robustness checks and sensitivity analyses (EC.7).

2. Literature Review

The literature on pandemic response, particularly following COVID-19, is vast, so we focus our

review on three key dimensions that our work most closely relates to.

Targeting. Paralleling our aforementioned real-life examples, several papers have studied targeted

interventions. Kucharski et al. (2020), Prem et al. (2020), Di Domenico et al. (2020) recognize the

importance of heterogeneity in the social contacts generated through activities and examine several

interventions limiting them. Though some of the models here are age differentiated, targeting

only happens through activities. Population group targeting, either through confinements, testing
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or vaccinations, has been investigated in Bastani et al. (2021), Acemoglu et al. (2021), Matrajt

et al. (2021), Goldstein et al. (2021), Bertsimas et al. (2020), Favero et al. (2020), Birge et al.

(2020), Chang et al. (2020), Evgeniou et al. (2020), Giordano et al. (2021). By enforcing stricter

confinements for higher risk groups (e.g., older populations when considering mortality risk or

younger populations when considering the risk of new infections), such targeted policies have been

shown to generate potentially significant improvements in health outcomes, and even in economic

value if optimally tailored (Acemoglu et al. 2021).

Optimization of interventions in epidemiological models. Our work relates to research that

combines epidemiological modeling and optimization techniques to design improved interventions.

In general, an epidemic is modeled by a compartmental model, where interventions change the

parameters that describe the epidemic with the goal to minimize the health (and economic) burden.

Although an analytical characterization of the optimal solution is possible in special cases or

in those when the control is single-dimensional and thus dynamic programming approaches are

amenable (Brandeau et al. 2003, Barnett et al. 2023, Calvia et al. 2024), the problem is generally

intractable and, similar to our ROLD framework, research has focused on proposing heuristic

algorithms and approximations for solving the general problem (Zaric and Brandeau 2001, 2002).

The algorithm proposed in Bertsimas et al. (2020) and our heuristic crucially depend on solving

linearized versions of the true SEIR dynamics that are tractable via commercial solvers. However,

Bertsimas et al. (2020) focuses on vaccine allocation decisions, whereas we capture the dynamics of

differential confinements and also allow activity-based targeting. Bose et al. (2021), Pataro et al.

(2021), Morris et al. (2021) also borrow from the optimal control literature, but the models there

are simpler than our own and do not capture targeting. Birge et al. (2020) use formal optimization

for location-based targeting, but in a one-shot model that does not differentiate age groups or

activities and does not account for time in the calculation of health or economic impact. Last,

several studies from the operations research community have proposed optimization models to

support the allocation of ventilators during epidemics (Huang et al. 2017, Adelman 2020, Mehrotra

et al. 2020, Bertsimas et al. 2021).
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Our paper is also related to a large stream of work that derives prescriptive insights for managing

the COVID-19 pandemic. Kaplan (2020) summarizes modeling studies that supported local deci-

sions on event crowd-size restrictions, hospital surge planning, and timing of activity restrictions

during COVID-19 response. Several papers simulate a small number of candidate policies for social

distancing, e.g., full lockdown versus school-only lockdown (Kucharski et al. 2020, El Housni et al.

2020, Bertsimas et al. 2021), compare a number of current and counterfactual lockdown policies

that differ in their schedule of relaxations (Boloori and Saghafian 2023), or restrict the candidates

to a simple parametric class for which exhaustive search is computationally feasible (e.g., trigger

policies based on hospital admissions as in Duque et al. 2020 or confirmed cases as Ahn et al.

2021). These approaches do not use formal optimization—although they may allow for the solutions

to change as the data changes—and, when considering a more complex policy space like in our

targeting model, could lead to significantly sub-optimal results and misleading conclusions. Navabi-

Shirazi et al. (2022) use multi-criteria optimization to select the mode (remote, in-person, hybrid)

of university courses and assign classrooms, under severely reduced capacities due to COVID-19

social distancing measures. The study of Fotouhi et al. (2021) helps policymakers design curbside

restrictions in meal delivery operations that reduce curbside crowding, thus increasing public safety

during a pandemic, yet enable delivery companies to retain their profitability.

Parameter uncertainty. Our robust SEIR formulation is inspired by a longstanding stream in

the operations research and optimal control literatures that seeks to optimize the worst case over a

set that captures parameter uncertainty (Zhou and Doyle 1998, Dullerud and Paganini 2013, Ben-

Tal and Nemirovski 2002, Bertsimas et al. 2011). On the epidemiology side, our approach relates

to a stream of research that embeds uncertainty into deterministic compartmental models, with

several approaches having emerged in the literature. One approach is related to stochastic SEIR

models, adding stochastic noise terms to the deterministic dynamics of the SEIR (Greenwood and

Gordillo 2009); such models have been used to estimate disease progression or control non-targeted

interventions in the context of COVID-19 (Olivares and Staffetti 2022, Fu et al. 2021, He et al. 2020,
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Lekone and Finkenstädt 2006). Another approach, which our paper adheres to, is to formulate the

control problem in a way that accounts for parameter uncertainty. In this vein, Köhler et al. (2021),

Bhardwaj et al. (2020), Wan et al. (2023), Lobato et al. (2021), Faranda and Alberti (2020) propose

robust formulations of non-targeted interventions under SEIR-type models, where key problem

parameters are allowed to belong to an uncertainty set. A closely related paper to ours is by Barnett

et al. (2023), who also formulate a robust framework that allows for ambiguity in epidemiological

and economic parameters. However, the ultimate focus of Barnett et al. (2023) is different: within

the class of non-targeted interventions, they compare the lockdown profiles corresponding to an

ambiguity-neutral decision maker versus one that is ambiguity-averse. In contrast, our focus is on

a more complex and high-dimensional model in which we shed light on the benefits of targeting

and how ambiguity impacts them.

3. Model and Optimization Problem

We develop a controlled, multi-group SEIR model that includes time-dependent confinements that

can be targeted based on age groups and types of activities that individuals engage in. The frame-

work is flexible and can be extended to capture other targeted interventions, such as testing or

vaccinations, as well as additional restrictions that make targeting more fair or practical, such as

fairness constraints, endogenous feedback, etc. We discuss several of these in Section 8.

3.1. Some Notation

We denote scalars by lower-case letters, as in v, and vectors by bold letters, as in v. We use

square brackets to denote the concatenation into vectors, v := [v0, v1]. For a time series of vectors

v1, . . . ,vn, we use vi:j := [vi, . . . ,vj] to denote the concatenation of vectors vi through vj. Lastly,

we use vᵀ to refer to the transpose of v.

3.2. Epidemiological Model and Controls

We rely on a modified version of the discretized SEIR (Susceptible-Exposed-Infectious-Recovered)

epidemiological model (Anderson and May 1992, Prem et al. 2020, Salje et al. 2020) with multiple
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Figure 1 Compartmental SEIR model for a specific group g with transition rates.

Sg Eg Ig Dg

Rg

β σ pDg µ

(1−
p D
g )µ

population groups that interact with each other. In our case study we use three groups g ∈ G

determined by age, with the youngest group capturing individuals with age of 0-19 years, the group

in the middle capturing individuals aged 20-64 years, and the oldest group capturing individuals

with age of 65 years or above. We use G to denote the collection of considered age groups. Time is

discrete, indexed by t= 0,1, . . . , T and measured in days. We assume that no infections are possible

beyond time T .

Compartmental Model and States. Figure 1 represents the compartmental model and the

SEIR transitions for a specific group g. For a population group g in time period t, the compartmen-

tal model includes states Sg(t) (susceptible to be infected), Eg(t) (exposed but not yet infectious),

Ig(t) (infectious). The model also has states Rg(t) (recovered) and Dg(t) (deceased). Each state

represents the number of individuals in that compartment at the beginning of the time period.

Susceptible individuals get infected and transition to the exposed state at a rate determined by

the number of social contacts and the transmission rate1 β. Exposed individuals transition to the

infectious state at a rate σ and infectious individuals transition out of the infectious state at a rate

µ. An infectious individual in group g deceases (recovers) with probability pDg (pRg = 1− pDg ).

We keep track of all living individuals in group g, Ng(t) := Sg(t) +Eg(t) + Ig(t) +Rg(t), and let

Xt =
[
Sg(t),Eg(t), Ig(t),Rg(t),Dg(t)

]
g∈G denote the full state of the system (across groups) at time

0≤ t≤ T . We denote the number of compartments by |X |, so the dimension of Xt is |G||X |× 1.

Controls. Individuals interact in activities A= {work, transport, leisure, school,home,other}. These

interactions generate social contacts that drive the rate of new infections.

1 The reproduction number R0 and the transmission rate β are related and comonotonic (Appendix EC.6.1).
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We control the SEIR dynamics by adjusting the confinement intensity in each group-activity pair

over time: we let `ag(t)∈ [0,1] denote the activity level allowed for group g and activity a at time t,

expressed as a fraction of the activity level under a normal course of life (i.e., no confinement). In

our study we take `home
g (t) = 1, meaning that the number of social contacts at home is unchanged

irrespective of confinement policy.2 We denote the vector of all activity levels for group g at t by

`g(t) = [`ag(t)]a∈A, and we also refer to `g(t) as confinement decisions when no confusion can arise.

We propose a parametric model to map activity levels to social contacts. We use cg,h(`g,`h) to

denote the mean number of total daily contacts between an individual in group g and individuals in

group h across all activities when their activity levels are `g,`h, respectively. Varying the activity

levels changes the social contacts according to

cg,h(`g,`h) =
∑
a∈A

Ca
g,h · (`ag · `ah)α, (1)

where Ca
g,h denote the mean number of daily contacts in activity a under normal course (i.e.,

without confinement) and α∈R is a social mixing parameter that captures the elasticity of social

contacts to activity levels. This parametrization is similar to a Cobb-Douglas production function

(Mas-Colell et al. 1995), using the activity levels as inputs and the number of social contacts as

output. We retrieve values for Ca
g,h from the data tool of Wille et al. (2020), which is based on the

French social contact survey data in Béraud et al. (2015), and we estimate α from health outcome

data (French Government 2020) and Google mobility data (Google 2020).

Let ut =
[
`g(t)

]
g∈G denote the vector of all decisions at time t ∈ {0,1, . . . , T − 1}, i.e., the con-

finement decisions for all the groups. We denote the number of different decisions for a given group

at a given time by |U|. Then the dimension of ut is |G||U| × 1 and the decisions are constrained:

ut ∈ [0,1]|G||U| for every t∈ {0,1, . . . , T − 1}.

2 The number of social contacts at home arguably increases when other activities are restricted, but these contacts

are likely with the same individuals and do not constitute independent trials that could result in infections, as in

a typical SEIR model. We therefore assume that contacts in the home activity are unchanged, but our model could

easily accommodate other assumptions.
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We can now write a complete set of discrete dynamical equations for the controlled SEIR model

((EC.1)-(EC.6) in Appendix EC.1) and summarize these using the function

Ft(Xt,ut) :=
∆Xt

∆t
, (2)

where ∆Xt :=Xt+1−Xt.

Targeting variants. We consider four versions of targeting: no targeting whatsoever (NO-

TARGET), targeting age groups only (AGE), targeting activities only (ACT), or targeting both

(AGE-ACT). We can think of each form of targeting as enforcing a constraint on activity levels—for

example `ag(t) = `a
′
g′(t) for all g, g′ ∈ G and a,a′ ∈A in the case of NO-TARGET.

3.3. Objective

Our objective captures two criteria. The first quantifies the total deaths directly attributable to

the pandemic, which we denote by Total Deaths(u0:T−1) :=
∑

g∈GDg(T ) to reflect the dependency

on the specific policy u0:T−1 followed. The second criterion captures the economic losses due to the

pandemic, denoted by Economic Loss(u0:T−1). These stem from three sources: (a) lost productivity

due to confinement, (b) lost productivity during the pandemic due to individuals being deceased,

and (c) lost value after the pandemic due to deaths (as deceased individuals no longer produce

economic output even after the pandemic ends).

To model (a), we assign a daily economic value vg(`) to each individual in group g that depends

on the activity levels ` := [`g]g∈G across all groups and activities. For the working age groups, vg(`)

comes from wages from employment and is a linear function of group g’s activity level in work

(`workg ) and of the average activity levels in leisure, other and transport for the entire population

(equally weighted). This reflects that the value generated in some industries, like retail, is impacted

by confinements across all these three activities. For the school age groups, vg(`) captures future

wages from employment due to schooling and depends on activity levels only through the group’s

activity level in school (`schoolg ). For (b), we assume that an individual who is deceased generates

no economic value. For (c), we determine the wages that a deceased individual would have earned
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based on their current age until retirement age under the prevailing wage curve, and denote the

resulting amount of lost wages with vlife
g .

The overall economic loss is the difference between the economic value V that would have been

generated during the pandemic under a “no pandemic” scenario and the value generated during

the pandemic, plus the future economic output lost due to deaths.

Economic Loss(u0:T−1) := V −
T−1∑
t=0

∑
g∈G

(
vg
(
`(t)

)
·Ng(t)

)
+
∑
g∈G

vlife
g ·Dg(T ), (3)

All the details of the economic modeling are deferred to Appendix EC.2.

To allow policymakers to weigh the importance of the two criteria, we associate a cost χ to each

death, which we express in multiples of GDP per capita. Our framework can capture a multitude of

policy preferences by considering a wide range of χ values, from completely prioritizing economic

losses (χ = 0) to completely prioritizing deaths (χ→∞). The policymaker aims to find control

policies for confinement that minimize the sum of mortality and economic losses3:

J(u0:T−1) := Economic Loss(u0:T−1) +χ ·Total Deaths(u0:T−1). (4)

3.4. Optimization Problem

The optimization problem seeks control policies for confinement that minimize the sum of mortal-

ity and economic losses subject to the constraints that (i) the state trajectory follows the SEIR

dynamics, and (ii) the controls respect the constraints discussed above. Formally, we solve:

min
u0:T−1

J(u0:T−1)

s.t. Xt+1 =Xt +Ft (Xt,ut) , ∀0≤ t≤ T − 1

u0:T−1 ∈ [0,1]T |G||U|.

(5)

3 Similarly to Acemoglu et al. (2021), we focus on characterizing the frontier between deaths and economic losses,

which can be obtained by varying the cost of death χ and minimizing the objective for each value of χ; this makes

our results informative for policymakers who may have differing views on the right value for such a key parameter.
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4. Analytical Results in a Simple Stylized Model

Before addressing (5), we first turn to investigating a simplified model in which we can analytically

solve for optimal policies and tease out the role of targeting.

4.1. Two-Period, Discrete-Time SIR Model

We consider two groups, G = {1,2}, and two activities, A= {1,2}. Time is divided into two periods

t ∈ {0,1}, with length ∆1 and ∆2 respectively. The policymaker can only reduce activity levels

in period t = 0, to a level no smaller than ε.4 In period t = 1, the economy reopens fully. Social

mixing generates contacts according to (1), with α= 1. A cure arrives at the end of period t= 1,

so no infections or deaths are possible henceforth. The epidemiological model is identical to our

base model, except that any susceptible individual that has a contact with an infected individual

directly transitions into an infectious state, so we ignore the exposed chamber Eg.
5 Economic value

is generated according to the linear form vg
(
`(t)

)
:=
∑

a v
a
g`
a
g(t).

This simple model variation is rich enough to replicate the key trade-offs that motivate our

study: the confinements during period t = 0 sacrifice economic value during that period for the

benefit of reducing deaths (and associated economic losses) in period t= 1 and subsequently.

Let u = [u1
1, u

1
2, u

2
1, u

2
2]ᵀ denote the activity levels in period t = 0, with components sorted by

activity, so uag = `ag(0). The following result reformulates the policymaker’s problem.

Proposition 1 (Reformulation). The problem of finding activity levels u ∈ [ε,1]|G| |A| to mini-

mize the total loss objective (4) in the two-period model is equivalent to the optimization problem:

max
u∈[ε,1]4

rᵀu− 1

2
uᵀQu, (6)

4 Our base model only includes a lower bound for “home.” We can readily extend all our qualitative results here to

bounds that are group- or activity-specific, but we retain the simpler assumption to streamline exposition.

5 Our qualitative insights hold even in a model with an Eg chamber, but that requires at least three periods so as to

reflect the effects of confinements from t= 0 on deaths. For simplicity, we use two periods and eliminate Eg.
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where r= [r1
1, r

1
2, r

2
1, r

2
2]ᵀ with rag := ∆0 v

a
g Ng(0), and the matrix Q∈R|G||A|×|G||A| is given by

Q =

Q
1 0

0 Q2

 , where Qa =

Ba
1 Ba

12

Ba
12 Ba

2

 for a∈A and (7a)

Ba
g = 2β∆0 ∆1AgC

a
gg

Ig(0)

Ng(0)
∀g ∈ G, Ba

12 = β∆0 ∆1

(
A1C

a
12

I2(0)

N2(0)
+A2C

a
21

I1(0)

N1(0)

)
, (7b)

Ag = (χ+ vlife
g )pDg µg Sg(0) for g ∈ G. (7c)

Proposition 1 exactly highlights the key trade-offs facing the policymaker, who is seeking to max-

imize the total economic value in period t = 0, rᵀu, net of the total cost of deaths created in

period t= 1, 1
2
uᵀQu. The parameter r has components rag = ∆0 v

a
g Ng(0) for each group’s intrinsic

economic value in each activity, i.e., the total economic value that each group could generate when

fully active in each activity a. To see why 1
2
uᵀQu captures the cost of deaths, note that Ag is a

proxy for group g’s death cost per infected contact: the expected economic and mortality-related

cost associated with a susceptible in group g getting infected (accounting for progression towards

death, µg · pDg , and subsequent cost, χ+ vlife
g ) multiplied by the number of susceptibles in group g.

Thus, when activity a is fully open, 1
2
Ba
g measures group g’s intra-group death cost, i.e., the total

death cost that group g imposes upon itself through within-group contacts, and Ba
12 measures the

inter-group death cost, i.e., total death cost that groups impose on each other through across-group

contacts. The quadratic term 1
2
uᵀQu adds such costs over all activities and all groups, accounting

for the allowed activity levels u in period t= 0.

Problem (6) is a constrained quadratic optimization problem that is separable across activities;

within each activity a ∈ A, the objective is component-wise concave in ua = [ua1, u
a
2]ᵀ, but it is

jointly concave in ua if and only if Da
B := det(Qa) =Ba

1B
a
2 − (Ba

12)2 ≥ 0.

4.2. Which Groups and Activities to Target For Confinement?

We start by providing an intuitive characterization for the dual-targeted policy, showing how it

prioritizes specific groups or activities for confinement. In this result and subsequently in this

section, we denote NO-TARGET by NT, AGE-ACT by AA, and h∈ G : h 6= g by ḡ.



S. Camelo, D. Ciocan, D. Iancu, X. Warnes, S. Zoumpoulis: Targeting for Pandemic Response
16

Proposition 2 (Optimal Dual Targeting; Comparative Statics). In the AA policy:

(i) For each activity a ∈ A, the optimal solution (ua)? is given by Table 1 and the conditions

therein if Da
B ≥ 0, and by one of the expressions in Cases 2-9 from Table 1 if Da

B < 0.

(ii) (uag)
? is increasing with rag ,Ng(0),Nh(0), and is decreasing with any parameter in the set

{β,χ}∪ {vlife
h , pDh , µh, Sh(0), Ih(0) : h∈ G}∪{Ca

gh : g,h∈ G}∪{raḡ}.

Case (ua)? =
(
ua

1, u
a
2

)?
Conditions on parameters

1. (I,I)
(ra1Ba

2 − ra2Ba
12

Da
B

,
ra2B

a
1 − ra1Ba

12

Da
B

)
ε <

ra1B
a
2 − ra2Ba

12

Da
B

< 1, ε <
ra2B

a
1 − ra1Ba

12

Da
B

< 1

2. (L,I)
(
ε,
ra2 −Ba

12ε

Ba
2

)
ε <

ra2 −Ba
12ε

Ba
2

< 1, ra1 ≤Ba
1ε+Ba

12

(ra2 −Ba
12ε

Ba
2

)
3. (I,L)

(ra1 −Ba
12ε

Ba
1

, ε
)

ε <
ra1 −Ba

12ε

Ba
1

< 1, ra2 ≤Ba
2ε+Ba

12

(ra1 −Ba
12ε

Ba
1

)
4. (U,I)

(
1,
ra2 −Ba

12

Ba
2

)
ε <

ra2 −Ba
12

Ba
2

< 1, ra1 ≥Ba
1 +Ba

12

ra2 −Ba
12

Ba
2

5. (I,U)
(ra1 −Ba

12

Ba
1

, 1
)

ε <
ra1 −Ba

12

Ba
1

< 1, ra2 ≥Ba
2 +Ba

12

ra1 −Ba
12

Ba
1

6. (L,L) (ε, ε) ra1 ≤ ε
(
Ba

1 +Ba
12

)
, ra2 ≤ ε

(
Ba

2 +Ba
12

)
7. (L,U) (ε,1) ra1 ≤Ba

1ε+Ba
12, ra2 ≥Ba

2 +Ba
12ε

8. (U,L) (1, ε) ra2 ≤Ba
2ε+Ba

12, ra1 ≥Ba
1 +Ba

12ε

9. (U,U) (1,1) ra1 ≥Ba
1 +Ba

12, ra2 ≥Ba
2 +Ba

12

Table 1 Optimal activity levels under dual targeting for a given activity a. The conditions identified are

necessary for optimality and are sufficient if Da
B =Ba

1B
a
2 − (Ba

12)2 ≥ 0.

Proposition 2(i) shows that policymakers could rely on simple rules to decide which groups

and activities to keep open, driven by the intuitive ratios in Table 1. Each ratio follows the same

pattern. The numerator is the net economic value that group g could generate if fully open in the

activity, given by the group’s intrinsic economic value rag net of the externality it imposes on the

other group ḡ, i.e., the death cost Ba
gḡ u

a
ḡ that group g imposes on group ḡ through inter-group

contacts, when taking into account group ḡ’s activity level.6 The denominator is the total death

6 Recall that Ba
gḡ = Ba

ḡg, so the externality term is also the death cost that group g itself incurs from inter-group

contacts. For case (I,I), the proof shows that (ua)? exactly satisfies the equations ua
g = (rag −Ba

gḡ u
a
ḡ)/Ba

g ,∀g ∈ G.
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cost Ba
g that group g imposes upon itself through intra-group contacts. The ratio thus captures an

intuitive “bang-for-the-buck” metric for when a group should be active: it should generate a high

ratio of net economic value per total death cost incurred. Notably, these ratios determine both

which group-activity pairs to prioritize and how active to allow these to be.

Part (ii) of Proposition 2 shows that the optimal dual-targeted policy changes in natural ways

with important problem parameters. Group g’s activity level increases with its intrinsic economic

value rag , but decreases with the cost of death χ, with the transmission rate β (and thus the basic

reproduction number R0), with any group’s disease progression parameters µh, pDh or the economic

value lost due to deceased individuals vlife
h , with the number of susceptible and infected individuals

(in either group) at the start of the period, with all social contact values in that activity, and

with the economic value generated by the other group raḡ . The latter result is driven by the same

substitution effect evident in the numerator of ratios driving the optimal policy: a group is more

confined when another group with high economic value is active in a certain activity, in order to

avoid creating extra costly infections (for both groups).

Similar results can be readily shown for each of the AGE and ACT policies (see Proposition EC.2

and Proposition EC.3, respectively). Our numerical study in Section 6 will confirm that these key

qualitative insights also hold in a more complex model with several age groups and activities, and

with many periods when confinement is possible.

4.3. Gains from Targeting

We next quantify the magnitude of gains from targeting and characterize how these depend on

important problem parameters. For this analysis, we assume that Da
B > 0 for each a∈A, which is

necessary and sufficient to ensure that problem (6) is a convex optimization problem, allowing us

to fully characterize the optimal solution. The condition Da
B > 0 is equivalent to:

Ba
1B

a
2 > (Ba

12)2 ⇔ 4A1A2C
a
11C

a
22

I1(0)

N1(0)

I2(0)

N2(0)
>

(
A1C

a
12

I2(0)

N2(0)
+A2C

a
21

I1(0)

N1(0)

)2

, (8)

which is an inequality with a natural interpretation: it requires the intra-group transmission costs

to be “substantially larger” (in terms of their geometric mean) than the inter-group transmission
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cost. The condition is likely to hold provided that the contact matrix Ca is strongly diagonally

dominant, which is a standard assortativity property that contact matrices documented in the

literature routinely satisfy (Mossong et al. 2008).

We next analyze how gains from targeting depend on the policy-relevant parameter χ and on the

transmission parameter β. We consider β because it follows a strictly monotonic relationship with

the basic reproduction number R0, arguably one of the most policy-relevant pandemic parameters.

Proposition 3 (Conditions for Gains from Targeting). For each optimal policy π ∈

{NT,AGE,ACT,AA}, there exist thresholds χπmin(β) ≤ χπmax(β) (with explicit closed-form

expressions) such that:

(i) There are zero gains from targeting if 0≤ χ≤ χπmin(β) or if χ≥ χπmax(β).

(ii) χπmin(β) and χπmax(β) are piecewise linear, increasing functions of 1/β.

(iii) The four thresholds satisfy the inequalities:

χAA
min ≤ χAGE

min , χ
ACT
min ≤ χNT

min and χAA
max ≥ χAGE

max , χ
ACT
max ≥ χNT

max.

(iv) For χ∈ (χNT
min, χ

NT
max), the gains of AGE,ACT,AA relative to NT are non-monotonic in problem

parameters such as {rag}g∈G,a∈A,{µg, pDg }g∈G.

Proposition EC.4 in the Appendix restates this result more explicitly, by including expressions for

all the thresholds and connecting them to other problem parameters.

Proposition 3 implies that targeting only brings benefits inside a certain L-shaped range of the

(β,χ) parameter space, when neither the cost of death χ nor the transmission rate β are excessively

low or excessively high. When χ is very low (specifically, χ≤ χAA
min(β)), the objective heavily weighs

economic value, so every policy would leave all groups fully open in all activities, uag = 1; conversely,

when χ is very large (χ≥ χAA
max(β)), all policies set minimum activity levels uag = ε to reduce the

large penalty for deaths. In both cases, there are no gains from targeting. The same outcomes arise

with a fixed χ if the transmission rate β becomes extreme: when β is very small—so essentially

no transmission occurs—all policies set uag = 1, whereas when the transmission rate is extremely
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high, all policies set minimal activity levels, uag = ε, to prevent an excessive number of costly

infections. The region wherein gains from targeting arise is L-shaped because both its lower and

upper envelopes decrease with β (by (ii), both decrease as 1/β, in piecewise fashion).

Intuitively, part (iii) also emphasizes that the boundaries of this region are determined by the

AGE-ACT policy: as χ rises just above χAA
min(β), the AGE-ACT policy is the first to be able to

generate gains, followed by AGE and ACT, and as χ is immediately below χAA
max(β), AGE-ACT is

the only policy that is still able to generate gains.

Lastly, part (iv) suggests that the gains from targeting–when positive–follow a complex, non-

monotonic pattern with respect to problem parameters.

A similar analysis can be conducted with respect to other important disease parameters (such as

pDg ) together with χ, and in all such cases the parameter regime wherein gains from targeting exist

can be shown to be L-shaped. These insights appear to be robust when we quantify the benefits

of targeting under our more complex model in Section 6.3, for both β (equivalently, R0) and pDg .

Proposition 3 does not provide any ordering or guidance regarding a choice between AGE and

ACT. The following result gives a more direct comparison.

Proposition 4 (AGE versus ACT). Based on thresholds from Proposition 3, let HACT-AGE :=(
χACT

max , χ
AGE
max

)
and HAGE-ACT :=

(
χAGE

max , χ
ACT
max

)
. Also, with κg := pDg µgSg(0), define:

Lg,a = β∆0∆1

[
κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+κḡ ·Ca

ḡg ·
Ig(0)

Ng(0)

]
Kg,a = β∆0∆1

[
vlife
g ·κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+ vlife

ḡ ·κḡ ·Ca
ḡg ·

Ig(0)

Ng(0)

] (9)

If

∃a∈A :

∑
g r

a
g∑

g Lg,a
>max

g

∑
a r

a
g∑

aLg,a
and ∃g ∈ G :

∑
aK

a
g∑

aLg,a
<min

a∈A

∑
gKg,a∑
g Lg,a

, (10)

then there exist positive thresholds β1 ≤ β2 (possibly identical) such that:

(i) if β < β1, HACT-AGE 6= ∅ and ACT has larger optimal objective than AGE if χ∈HACT-AGE;

(ii) if β > β2, HAGE-ACT 6= ∅ and AGE has larger optimal objective than ACT if χ∈HAGE-ACT.



S. Camelo, D. Ciocan, D. Iancu, X. Warnes, S. Zoumpoulis: Targeting for Pandemic Response
20

Moreover, if both inequalities in (10) are switched, (i) and (ii) hold with ACT switched with AGE.

The result states sufficient conditions under which ACT dominates AGE or vice-versa, per parts (i)

and (ii), respectively. To gain intuition for the conditions in (10), consider first the factors Lg,a

and Kg,a. The relationship between these factors and the disease burden is quite straightforward:

Ba
g +Ba

g,ḡ =Lg,aχ+Kg,a. Therefore, 1
2
Lg,a exactly accounts for the expected deaths created by an

individual in group g through his social contacts in activity a; this includes the deaths created

within his own group (the term involving Ca
gg) and the average of the deaths created in groups g

and ḡ through inter-group contacts (the terms with Ca
gḡ and Ca

ḡg). The term Kg,a quantifies the

economic loss associated with these deaths due to lost lifetime economic value (from vlife
g and vlife

ḡ ).

The first inequality in (10) thus requires the existence of an activity a whose “average risk-adjusted

intrinsic value”—the ratio of its total intrinsic economic value
∑

g r
a
g prorated by the total expected

deaths it creates when both groups are fully active in it,
∑

g Lg,a—is strictly larger than the risk-

adjusted intrinsic value of either group g ∈ G. In contrast, the second inequality in (10) requires

the existence of a group g whose “average economic loss from death”—the ratio of total economic

losses from deceased group members,
∑

aKg,a, prorated by the total expected deaths the group

creates in all activities it engages in,
∑

aLg,a—is strictly smaller than that of either activity.

Example 1. It is illuminating to consider an example inspired by our case study based on Ile-de-

France data (Section 6.1). Group g = “ya” corresponds to the young/adult population and group

g = “e” corresponds to an elderly population, in retirement; activity a= “w” is work and activity

a= “o” summarizes other activities (leisure, transport, etc.). The data predictably suggest that the

intrinsic economic value in work is much higher than that of other activities (
∑

g r
w
g �

∑
g r

o
g) and

the lost economic output due to a death in the young/adult population is higher than that in

the elderly population (vlife
ya � vlife

e ). The elderly have higher mortality risk pDe � pDg . Lastly, the

majority of social interactions occur in other activities, and at work among the young.7

With this example, one can verify that:

7 The social contact matrices satisfy Co
ya,ya >C

o
e,ya >C

o
e,e ≈Cw

ya,ya >C
o
ya,e ≈Cw

e,ya ≈Cw
ya,e�Cw

e,e. To give a sense of

relative magnitudes, a > corresponds to doubling the contacts, and � corresponds to ten times the contacts.
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1. The highest number of expected deaths (when fully open) would be incurred in other activities,

for elderly and then the young, followed by work, in the order Le,o >Lya,o�Le,w ≈Lya,w.

2. The highest lifetime economic loss from deaths is incurred from the young/adult group engaging

in other activities and then in work, following by the elderly engaging in other activities and

work (Kya,o >Kya,w >Ke,o >Ke,w). This is driven largely by the large gap in vlife
ya � vlife

e and

by the large number of social contacts occurring in other activities.

Then, the work activity “w” and the elderly group “e” satisfy the inequalities in (10). Work sat-

isfies the first inequality in (10) both because its intrinsic value is high (large numerator
∑

g r
w
g )

and because the social contacts in work are small relative to other activities (small denominator∑
g Lg,a). The elderly group g = “e” satisfies the second inequality in (10) because of the dispro-

portionately large number of deaths that it incurs when active (large denominator Le,w +Le,o) and

due to the smaller loss in economic output from deaths (small numerator Ke,w +Ke,o).

The example highlights the parameter regimes that make the inequalities hold. Heterogeneity

in the intrinsic economic value or the social contacts of activities would make the first inequality

in (10) more likely to hold. If an activity with high intrinsic value also has fewer social contacts,

as is expected from work, that is even more likely. Heterogeneity in the mortality risk of groups,

in their lifetime economic value, or in the social contacts they generate make the second condition

more likely to hold. If a particular group happens to have both a lower economic lifetime value and

a high number of expected deaths, as is expected from the elderly, the condition very likely holds.

To appreciate why—under these conditions—ACT has better performance than AGE at a low

β and high χ regime, whereas AGE has better performance at a high β and low χ regime, consider

again our example. When the basic reproduction number R0 is low (low β) and the policymaker

cares enough about the health burden to consider confinements but not to completely confine

everything (i.e., χ large but not excessive), then ACT is better than AGE: the policymaker could

keep work open and confine other activities, which would maintain high economic output while also

reducing deaths substantially (as Le,o > Lya,o� Le,w ≈ Lya,w). In contrast, AGE would be forced
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to confine both groups because the same inequality implies that confining only one group would

still generate many deaths. When the reproduction is very large (β large), the number of infections

and deaths is very large, and matter even for a policymaker who prioritizes economic value (i.e.,

low χ) due to the lifetime economic cost associated with deaths. In this regime, AGE would

actually perform better: the inequality Kya,o >Kya,w >Ke,o >Ke,w suggests that by confining the

young/adult group, the policymaker would be able to suppress enough deaths and also preserve

enough economic value in the process, whereas with ACT, they would have no alternative but to

fully confine all activities.

The discussion and the example also highlight the ways in which an AGE-ACT policy improves

upon both AGE and ACT. In fact, AGE-ACT can improve in both regimes: at low β and high χ,

AGE-ACT could confine the elderly group in other activities and only if needed, confine the young

group in other activities (and not necessarily to the same level). At high β and low χ, AGE-ACT

could confine the young/adult group in other activities, followed by the young group in work, if

need be; interestingly, note that the AGE-ACT policy would not target the elderly group with

confinements in this case.

Our results based on the stylized model suggest a few important insights and implications. Tar-

geted confinements follow intuitive rules—prioritizing groups with high ratios of intrinsic economic

value to mortality cost—but the proper calculation of such ratios should take into account the

externalities that groups create upon each other through cross-group infections. Gains from tar-

geting only arise in specific parameter regimes and the choice of whether to target activities or

demographic groups is subtle, governed by important disease parameters and by the policymaker’s

prioritization between economic and mortality losses. As targeting may also entail implementation

costs, it is critical to accurately quantify the magnitude of gains with more realistic models that

capture long-term disease progression and the policymaker’s ability to adjust decisions over time.

5. Algorithm: Re-Optimization with Linearized Dynamics

With this motivation, we next focus on designing algorithms for finding optimal targeted policies

for our general model in Section 3 and quantifying the gains of targeting. Solving problem (5) to
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optimality, however, requires solving intractable problems. This arises because the key term in the

dynamics of any SEIR-type model is the rate of new infections, which involves multiplying the

susceptible state with the infected state. This introduces nonlinearity in the state dynamics; for

instance, the change in the susceptible population in group g in our model from (EC.2) is:

∆Sg(t) =−β ·Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t)) · Ih(t)

Nh(t)

)
.

Even with a social mixing parameter value α= 1, like in our stylized model, expanding the expres-

sion of Sg(t) for multiple periods produces a complex, non-convex dependency on past decisions

`(τ) for 0≤ τ ≤ t− 1, which makes the resulting problem intractable via convex optimization.

We therefore focus on developing heuristics that can tractably yield good policies, and we pro-

pose an algorithm called Re-Optimization with Linearized Dynamics, or ROLD, that builds a

control policy by incrementally solving linear approximations of the true SEIR system. Importantly,

although we describe the ideas in the context of our simplified SEIR model, the ROLD framework

can be readily generalized to deal with more complex, real-world settings that involve parameter

uncertainty (see Section 7.1), complex SEIR models with more age groups or limited resources

(such as hospital or ICU capacity), or limited compliance with the recommended lockdowns.

5.1. Linearization and Optimization

The key idea is to solve the problem in a shrinking-horizon fashion, where at each time step k =

0, . . . , T , we linearize the system dynamics and objective (over the remaining horizon), determine

optimal decisions for all k, . . . , T , and only implement the decisions for the current time step k.

We first describe the linearization procedure. Recall that the true evolution of our dynamical

system is given by (2). The typical approach in control theory is to linearize the system dynamics

around a particular “nominal” trajectory. More precisely, assume that at time k we have access

to a nominal control sequence ûk:T−1 and let X̂k:T denote the resulting nominal system trajectory

under the true dynamic (2) and under ûk:T−1. We approximate the original dynamics through a

Taylor expansion around (X̂t, ût):

∆Xt

∆t
≈Ft(X̂t, ût) +∇XFt(X̂t, ût)(Xt− X̂t) +∇uFt(X̂t, ût)(ut− ût), (11)
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where∇XFt and∇uFt denote the Jacobians with respect toXt and ut, respectively. Note that these

Jacobians are evaluated at points on the nominal trajectory, so (11) is indeed a linear expression

of Xt and ut. By induction, every state Xt under dynamic (11) will be a linear function of uτ for

τ < t, and all the constraints will also depend linearly on the decisions.

In a similar fashion, we linearize the objective (4). Since vg(`(t)) is linear in ut for all t =

0, . . . , T − 1, the objective contains bilinear terms and can be written compactly as:

T−1∑
t=0

(uᵀtMXt +γᵀXt) +ηᵀXT , (12)

for some matrix M with dimensions |G||U|× |G||X |, and vectors γ and η of dimensions |G||X |× 1

(detailed expressions are available in Appendix EC.4). By linearizing this using a Taylor approxi-

mation, we consider the following objective instead:

T−1∑
t=0

(
ûᵀtMX̂t + X̂ᵀ

tM
ᵀ(ut− ût) + ûᵀtM(Xt− X̂t) +γᵀXt

)
+ηᵀXT , (13)

which depends linearly on all the decisions u0, . . . ,uT−1.

Linearization-optimization procedure. We use the following heuristic to obtain an approxi-

mate control at time k, for k= 0, . . . , T − 1:

1. Given the current state Xk and a nominal control sequence û
(k)
k:T−1 for all remaining periods,

calculate a nominal system trajectory X̂k:T under the true dynamic in (2). (The nominal

control sequence is obtained by a random seeding procedure at k= 0, and from the algorithm’s

own output from period k− 1 for periods k > 0, per Step 4 below.)

2. Use (11) to approximate the state dynamic around the nominal trajectory X̂t and use (13) to

approximate the objective-to-go function over the remaining periods t∈ {k, . . . , T} .

3. Solve the linear program to obtain decision variables u
?,(k)
k:T−1 that maximize the linearized

objective-to-go subject to all the relevant linearized constraints.

4. Set the nominal control sequence for the next time step as û
(k+1)
k+1:T−1 :=u

?,(k)
k+1:T−1.

5. Update the states using the optimal control u?k := u
?,(k)
k and the true dynamic in (2), i.e.

Xk+1 =Xk +Fk(Xk,u
?
k).
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The linearization-optimization procedure described above is run for all periods k = 0, . . . , T − 1

sequentially to output a full control policy u?0:T−1.

Trust region implementation. In our experiments, we have found that the linearized model

described in (11) may diverge significantly from the real dynamical system when the optimized

controls u
?,(k)
k:T−1 determined in Step 3 diverge sufficiently from the nominal controls û

(k)
k:T−1 consid-

ered in the linearization in Step 2. This can lead to sensitivity in performance to the initialization

used in the very first step. For example, if the Taylor approximation were constructed around a

policy of full confinement, the linearized model could systematically underestimate the number of

infections and deaths created when considering more relaxed confinements.

We overcome this by employing an iterative procedure inspired by a trust region optimization

method. The key idea is to avoid the large approximation errors by running the linearization-

optimization procedure iteratively within each time step k, with each iteration only being allowed

to take a small step towards the optimum within a trust region of an ε-ball around the nominal

control sequence û
(k)
k:T−1, and the updated optimized control sequence of each iteration being used

as a nominal sequence for the next iteration. This leads to a procedure that is much more robust

to the initial guess of control sequence, albeit at the expense of increased computation time.

6. The Gains from Targeting

We next apply our framework to quantify the magnitude of gains from targeting. We focus the dis-

cussion here on the context of COVID-19 in the Île-de-France region of France, but Appendix EC.7.1

presents results for two other countries with very different demographic profiles (Hong Kong and

South Africa) and for other pandemics with different dynamics (Ebola and Influenza), showing

that all the insights are robust.

6.1. Experimental Setup

We adopt values for disease progression parameters for Île-de-France directly from the study

by Salje et al. (2020), and values for the number of social contacts for different age groups and
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activities from the study of Béraud et al. (2015) focused on France, using the tool by Wille et al.

(2020). We calibrate our economic model using data on full time equivalent wages and employment

rates from the French National Institute of Statistics and Economic Studies, and sentiment surveys

on business activity levels during confinement from the Bank of France. The values for all our

model parameters are summarized in Tables EC.2–EC.5; Appendix EC.6 provides all the details

for parameter specification.

We use an optimization horizon of T ′ = 90 days in the experiments reported in the main paper.

The starting time of the horizon, t= 0, corresponds to March 17 2020, the day when lockdowns

for the COVID-19 pandemic started in France. We obtain the initial configuration at t = 0 by

considering the date of patient zero to be December 20 2019.8 We allow confinement decisions to

change every two weeks. To optimize confinements, we set the total time horizon to be T = T ′+ 41

and further constrain the policies to be fully open on days T ′, . . . , T ′ + 41, while allowing for

infections beyond day T ′. We do this to mitigate possible end-of-horizon effects: any deaths and

loss of economic value between day T ′ + 1 and T ′ + 41 will still count towards the objective, so

no policy can allow for too many infections towards the end of the T ′-day optimization horizon.

Section 8 discusses further techniques for mitigating end-of-horizon effects.

To quantify the benefits of targeting, we calculate the four ROLD policies of interest—NO-

TARGET, AGE, ACT, and AGE-ACT (or simply ROLD when no confusion can arise)—in problem

instances covering a wide range of values for χ, from 0 to 1000× the annual GDP per capita in

France.9 For each χ value and each policy, we record separately the economic losses and the number

of deaths generated. To obtain each policy, we run suitably constrained versions of the ROLD

optimization problem initialized at several starting points (details in Appendix EC.4.4).

8 We assume that the SEIR process starts with an infected individual of the 20-64 y.o. age group (Mohammad 2020).

9 We quantify the cost of death χ as a multiple of the annual GDP per capita in France and use the shorthand

notation n× to denote a value of n times this annual GDP per capita. For the GDP per capita of France, we use the

figure for 2019, converting US dollars to EURO using the exchange rate on June 17, 2020.
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6.2. Gains from Targeting

Figure 2 records each policy’s performance in several problem instances that differ in the value

for the cost of death χ. A striking feature is that each of the targeted policies actually Pareto-

dominates the NO-TARGET policy, and the improvements are significant: relative to NO-TARGET

and for same number of deaths, economic losses are reduced by EUR 0-12.4 (0%-93.1%) in AGE,

by EUR 0-13.1B (0%-86.1%) in ACT, and by EUR 0-16.6B (0.1%-96.8%) in AGE-ACT. This

Pareto-dominance is unexpected because it is not explicitly required in our optimization procedure.

This underlines that any form of targeting can lead to significant improvements in terms of both

health and economic outcomes. Importantly, although neither AGE nor ACT Pareto-dominate each

other, AGE-ACT Pareto-dominates all other policies. These results, which are very robust (see

Appendix EC.7.2 for many more problem instances), suggest that dual targeting has the potential

to significantly improve both health and economic outcomes.

We also compare the ROLD policies with two extreme benchmarks, corresponding to a “full

confinement” (FC) policy that sets all activity levels (except home) to 0, and a “fully open” (FO)

policy that sets all activity levels to 1. These benchmarks can be expected to perform well when

completely prioritizing a reduction in the number of deaths (χ→∞) or economic losses (χ= 0),

respectively. ROLD AGE-ACT meets or exceeds the performance of these two extreme policies:

for a sufficiently large χ, ROLD exactly recovers the FC policy, resulting in 9,983 deaths and

economic losses of EUR 33.8B; for a sufficiently low χ, ROLD actually Pareto-dominates the FO

policy, reducing the number of deaths by 4,606 (9.11%) and reducing economic losses by 16.6%.

The latter result, which may seem surprising, is driven by the natural premise captured in our

model that deaths generate economic loss because of lost lifetime economic value. Thus, a smart

sequence of confinement decisions can actually improve the economic loss relative to FO. Among

all the policies we tested, ROLD AGE-ACT was the only one capable of Pareto-dominating the FO

benchmark, confirming that dual targeting is critical and powerful. That targeting can generate

such improvements is unexpected because the ROLD framework’s objective does not stipulate this.
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Figure 2 The total number of deaths and the economic losses generated by targeted ROLD policies. The plot also

includes two important benchmarks: a “fully open” policy (FO) that sets all activity levels to 1, and a

“full confinement” policy (FC) that sets all activity levels to 0. Each marker corresponds to a different

problem instance parameterized by the cost of death χ. We include 30 distinct values of χ from 0 to

1000×, and we also include a very large value (χ= 1016×, for which ROLD AGE-ACT recovers the full

confinement policy FC.

To better understand how gains could arise from targeting, we next examine the structure of

the optimal ROLD AGE-ACT decisions. Our main observation is that the policy maintains high

activity levels for (age group, activity) pairs with high economic value and few social contacts.

Specifically, the policy consistently raises activity levels in (age group, activity) pairs with a high

econ-to-contacts-ratio, defined as the marginal economic value divided by the total social contacts

generated by a group in an activity:

econ-to-contacts-ratio(g, a, t) :=
∂Economic Value(t)/∂`ag(t)

Ng(t)
∑

h∈G C
a
h,g

,

where Economic Value(t) =
∑

g∈G (vg (`(t)) ·Ng(t)). This ratio directly relates to our findings on the

“bang-for-the-buck” ratio in Proposition 2 of Section 4, and confirms the key intuition that dual

targeting raises activity levels based on ratios of economic value and potential death burden.
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To understand how ROLD AGE-ACT generates complementarities, note that the ability to

separately target age groups and activities allows the ROLD policy to fully exploit the fact that

distinct age groups may be responsible for the largest econ-to-contacts-ratio in different activities.

As an example, the 20-64 y.o. group has the highest ratio in work, whereas the 0-19 y.o. and

65+ y.o. groups have the highest ratio in leisure. Accordingly, ROLD coordinates confinements to

account for this (see Figure 3): the group 20-64 y.o. remains more open in work, but faces strict

confinements in leisure, transport, and other; whereas groups 0-19 and 65+ y.o. remain more open in

leisure, transport, and other, and group 0-19 y.o. is allowed some activity in work (but less than the

work activity level of group 20-64 y.o.). These complementary confinement schedules allow ROLD

to reduce both the number of deaths and economic losses, with the important added benefit that

no age group is completely confined.

Mar 17 2020 Mar 31 2020 Apr 14 2020 Apr 28 2020 May 12 2020 May 26 2020 Jun 09 2020
Date

0

20

40

60

80

100

W
or

k 
Ac

tiv
ity

 L
ev

el
 (a

s %
)

Work young
Work adult
Work retired
Avg(L,T,O) young
Avg(L,T,O) adult
Avg(L,T,O) retired

0

20

40

60

80

100

Av
er

ag
e 

of
 L

ei
su

re
, T

ra
ns

po
rt,

 O
th

er
 (a

s %
)

Work and Average of Leisure, Transport, and Other Activities by Age Group

Figure 3 The activity levels of ROLD AGE-ACT policies for work, and for the average of leisure, transport, other,

for each of the three age groups. The lines indicate mean activity levels, where for each time t the mean

is taken across different values for the cost of death χ. (The figure is best viewed in color.)

6.3. The Dependence of Gains from Targeting on Key Parameters
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Next, we examine how the gains from targeting change with two key epidemiological parameters,

the basic reproduction number R0 and the probability of death conditioned on infection pDg , across

different values of the cost of death χ.

Dependence on reproduction number. We vary R0 starting from 0.01, 0.5 and then up to

10.0 in 0.5 increments. (For reference, the R0 value in our COVID-19 study was 2.9, as defined

in Appendix EC.6.) We also vary the key policy parameter χ from 0× to 300× and for each pair

of (R0, χ) values, we determine the optimal ROLD policies and calculate the gains of targeting

relative to the optimal ROLD NO-TARGET policy.10 Figure 4a reports the gains of targeting, and

Figure 4b reports the average activity levels for all ROLD variants.

We focus on the gains of ROLD AGE-ACT with respect to ROLD NO-TARGET. Consistent with

the predictions from Proposition 3 in Section 4, we see that ROLD AGE-ACT attains significant

gains in an L-shaped region of the (R0, χ) parameter space, wherein gains can exceed 50%. We

distinguish three regimes depending on χ. For low χ, both AGE-ACT and NO-TARGET tend to

remain open, and thus gains from targeting are zero for any R0. Similarly, for χ values exceeding

a certain (R0-dependent) threshold, both AGE-ACT and NO-TARGET close down all activities,

and thus gains from targeting are again zero. Both regimes replicate the predictions in Section 4,

and can be seen in the average activity heatmaps in Figure 4b.

The dependence is more nuanced for medium χ (from 30× to 100×), where two peaks emerge

as R0 increases from 0.01 to 10. For R0 in the 0.5 to 4.0 range, both AGE-ACT and NO-TARGET

progressively close down activity as R0 increases. The advantage of AGE-ACT is that it can leverage

finer targeting, which allows it to maintain a higher activity level than NO-TARGET—as evident

from the more gradual reduction of activity shown in Figure 4b—which leads to higher economic

value. However, as R0 exceeds 4.5, NO-TARGET maintains full confinement, whereas AGE-ACT

begins to gradually raise activity levels thanks to finer targeting, which leads to another peak

in gains. At such high values of R0, one enters a herd immunity scenario where infections and

10 That is, one minus the ratio of total loss with a targeted policy divided by total loss with ROLD NO-TARGET.
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(a) Gains of ROLD AGE-ACT, AGE, and ACT over NO-TARGET
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(b) Average activity levels of ROLD AGE-ACT, AGE, ACT, and NO-TARGET

Figure 4 Heatmaps showing outcomes under optimal ROLD policies as a function of the basic reproduction

number R0 and the cost of death χ. Figure (a) provides heatmaps for the relative gains of targeting

over NO-TARGET. Figure (b) provides heatmaps for the average activity levels of the ROLD variants.

(The figure is best viewed in color.)

deaths are somewhat unavoidable11, so all ROLD policies seems to exhibit a switch in strategy

from full confinement to policies that enforce confinements over fewer periods of time and allow

more activity subsequently (as evidenced in the pattern of average activity levels that increase with

R0, seen in Figure 4b). In this regime, targeting is again beneficial: AGE-ACT can confine groups

and activities differentially, which raises economic value without substantially increasing deaths.

In contrast, NO-TARGET is forced to maintain significantly stricter confinements to control the

excessive number of deaths. (This is best seen in Figure EC.3 in the Appendix, which plots separate

heatmaps for economic losses and deaths.)

11 Because we do not restrict the home activity, the entire population becomes infected for very large R0.
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The complex dependency of gains (specifically, the two peaks emerging due to herd immunity)

highlights the difficulty of making accurate predictions in realistic settings based solely on a stylized

model, and underscores the need for a structured optimization approach to drive policy.

We also examine the relative gains of targeting based solely on age groups or on activities.

Figure 4a shows the gains of AGE and ACT over NO-TARGET. The plots exhibit qualitatively

similar behavior to that of AGE-ACT, so our prior comments directly apply, albeit in a more

narrow region of the parameter space. Importantly, when comparing AGE and ACT, it is noticeable

that ACT tends to deliver larger gains for pairs with low R0 and high χ values, whereas AGE

delivers larger gains at pairs with high R0 and lower χ values. This behavior, which was predicted

in Proposition 4 based on the stylized model, becomes even more evident in Figure 5, which shows

the relative gains of AGE over ACT. Note that there is a region of R0 between 1 and 4.0, with

moderate-to-high values of χ, where ACT dominates over AGE. Conversely, AGE delivers larger

gains than ACT in the regime of high R0 and low-to-moderate χ. Dual targeting leverages the

advantages of both AGE and ACT, which enlarges the L-shaped region of gains.
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Figure 5 Heatmap with the relative gains of ROLD AGE vs. ROLD ACT, as a function of the reproduction

number R0 and the cost of death χ. Large positive (negative) values indicate that AGE (respectively,

ACT) dominates. (The figure is best viewed in color.)
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Dependence on probability of death multiplier. We next examine how targeting gains depend

on group-specific parameters. We focus on the impact of the mortality risk for the 65+ y.o. age

group, which we change by multiplying the probability of death given infection pDg for that group

with a factor taking values from 0.01, 0.05, 0.1, and then up to 5.0 in 0.1 increments. We keep the

probabilities of death for the other two groups fixed. The results are depicted in Figure 6a, which

plots the gains relative to NO-TARGET, and in Figure 6b, which plots the average activity levels

for all ROLD variants.
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(b) Average activity levels of ROLD AGE-ACT, AGE, ACT, and NO-TARGET

Figure 6 Heatmaps showing outcomes under optimal ROLD policies, as a function of the multiplier of the prob-

ability of death pDg for the 65+ y.o. age group and the cost of death χ. Figure (a) provides heatmaps for

the relative gains of targeting over NO-TARGET. Figure (b) provides heatmaps for the average activity

levels of the ROLD variants. (The figure is best viewed in color.)

The L-shaped parameter region where gains exist is again readily apparent, and gains can be

as high as 50% with AGE-ACT. For low χ, all policies maintain full activity levels regardless of
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the mortality risk (pDg ), so gains from targeting are negligible. At intermediate χ values, as the

mortality risk rises, all policies lower the activity levels, but to different degrees: NO-TARGET

must lower them significantly, to control the large number of deaths in the elderly group, whereas

AGE-ACT can differentially confine groups, and allow a higher average activity level, which creates

gains. Those gains vanish as mortality risk (pDg ) increases further and all policies tend to enforce

complete confinement. The main difference compared to our earlier study focused on R0 is that

no second peak in gains emerges. Regardless of χ, a higher mortality risk would make every policy

reduce its activity levels, so no switch towards herd immunity occurs, and the relative gains simply

vanish as mortality risk rises sufficiently. This also makes χ and pDg rough substitutes in terms of

how they affect outcomes and gains: both χ and pDg ultimately scale the overall cost of deaths, so

gains decrease roughly with the product of χ and pDg , consistent with the predictions based on the

stylized model in Section 4.

7. Dealing with Parameter Uncertainty

At the time when policymakers are forced to make important confinement decisions, they may still

face uncertainty regarding the value of important problem parameters such as the basic reproduc-

tion number R0 or the mortality rates for different age groups–and more so at the onset of a new

pandemic. However, some of this uncertainty could be resolved with time, as more information

becomes available. In this section, we provide an extension of our framework to accommodate this

situation and we investigate how gains from targeting depend on uncertainty.

7.1. Robust Formulation

To capture this realistic situation, let θ ∈ Rm denote the vector of all parameters with unknown

values at time t = 0; we model θ as a random vector following an unknown discrete probability

distribution. Specifically, we consider a discrete set of scenarios Ω = {1,2, . . . , |Ω|} indexed by ω and

assume that θ is supported on the set Θ = {θω : ω ∈ Ω} ⊂ Rm, taking value θω with probability

pω, for ω ∈ Ω. We let p := (p1, p2, . . . , p|Ω|)
ᵀ denote the probability distribution of θ. To model
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ambiguity, we assume that p is only known to reside in an ambiguity set of potential distributions

P, which is given as the convex hull of n known extreme beliefs P1,P2, . . . ,Pn:

p∈P := conv
(
{P1,P2, . . . ,Pn}

)
, where Ps ∈

{
p∈R|Ω| : p≥ 0,

∑
ω∈Ω

pω = 1
}
, ∀s∈ {1, . . . , n}.

Our robust model allows for limited learning while remaining tractable. Although the value of

θ is unknown at t= 0, we assume that it becomes known at the start of a future period T new ∈

{1, . . . , T − 1}, and the policymaker can adjust their subsequent decisions after learning the value.

That is, when θ = θω, the control during periods t ∈ {T new, T new + 1, . . . , T − 1}, notated by uωt ,

can depend on the realized scenario ω. To formalize this, we allow the decisions to depend on

the scenario ω for every period t∈ {0, . . . , T − 1}, but we impose non-anticipativity constraints to

ensure that the policymaker only uses information that is available at each time:

uωt =uω
′

t ,∀t∈ {0,1, . . . , T new− 1}, ∀ω,ω′ ∈Ω. (14)

The constraints ensure that the same control policy is followed up until the time T new when new

information is learned, while subsequent decisions are allowed to depend on the learned information.

Correspondingly, we revisit our earlier notation to show the explicit dependency on parameters

θ. In scenario ω ∈Ω, we use uω0:T−1 to denote all decisions, we rewrite the state dynamics as:

Xω
t+1 =Xω

t +Ft (X
ω
t ,u

ω
t ,θ

ω) , ∀0≤ t≤ T − 1, ∀ω ∈Ω, (15)

and use Economic Loss(uω0:T−1,θ
ω), Total Deaths(uω0:T−1,θ

ω), and J(uω0:T−1,θ
ω) to denote the result-

ing economic losses, total deaths, and total loss objective, respectively.

When deciding confinements in period t= 0, the policymaker seeks to minimize the worst-case

expected total loss. Formally, the policymaker’s optimization problem is:

minimize
{uω

0:T−1
}ω∈Ω

max
p∈P

∑
ω∈Ω

pω ·J(uω0:T−1,θ
ω)

s.t. Xω
t+1 =Xω

t +Ft (X
ω
t ,u

ω
t ,θ

ω) ∀t∈ {0, . . . , T − 1},∀ω ∈Ω

uω0:T−1 ∈ [0,1]T |G||U| ∀ω ∈Ω

uωt =uω
′

t ∀t∈ {0,1, . . . , T new− 1}, ∀ω,ω′ ∈Ω.

(16)
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Discussion of modeling assumptions. Modeling the support Θ and ambiguity set P allows us

to capture varying degrees of information and attitudes towards uncertainty that policymakers may

have. In practice, Θ could contain a few scenarios, for instance, a central, representative scenario

and some important deviations derived from the confidence intervals obtained when estimating

the parameters. The ambiguity set P models the accuracy of the information, but also the pol-

icymaker’s attitude towards ambiguity. With n= 1, the policymaker is risk-neutral. With n > 1,

the policymaker is ambiguity averse, and a higher n increases the aversion towards ambiguity and

makes the model more robust. As an extreme example, taking n= |Ω| and Ps as unit mass on sce-

nario θs (i.e., 1 in position s and 0 otherwise) would be akin to considering a robust optimization

model that minimizes the worst-case losses calculated over all values θ ∈Θ.

Robust ROLD. We can readily extend the ROLD algorithm described in Section 5 to the robust

problem in (16). First, we linearize the states under each scenario ω ∈Ω, i.e., we use a nominal con-

trol sequence ûω0:T−1 and its associated nominal system trajectory X̂ω
0:T to linearize the states Xω

0:T

corresponding to scenario ω—with evolution described by (15)—around the nominal trajectories.

With this, the problem of finding a non-anticipative control policy that minimizes the worst-case

expected losses can be rewritten as a large-scale linear program. For further algorithmic details,

we refer the reader to Appendix EC.5.

7.2. Gains of Robust ROLD Under Ambiguity

A natural conjecture to make is that a policymaker faced with ambiguity might prefer stricter con-

finements and that the benefits of targeting would decrease with increased ambiguity. To examine

such questions, we apply our robust ROLD algorithm to the Île-de-France case study and consider

two sets of experiments: one where ambiguity affects the reproduction factor R0 and one where it

affects the multiplier of the probability of death pDg for the elderly group. Focusing on these two

parameters makes sense because they are key drivers of pandemic progression and more likely to be

pandemic-specific and thus unknown at the start of a new pandemic. In contrast, other parameters
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such as social contacts or economic values are less likely to change with a new pandemic, so ambi-

guity seems less pressing in their case. (Our robust framework readily allows modeling ambiguity

over any problem parameters, should that be meaningful.)

Experimental setup. We describe the robust formulation with ambiguity in R0; the one for

the pDg multiplier is similarly set up. We consider values for R0 as in Section 6.3, namely

{0.01,0.5, 1, . . . ,9.5,10}. For each experiment, we consider |Ω| = 3 scenarios: a focal R0 scenario

plus the two adjacent R0 values from the range above. For simplicity we refer to these as the L

(lower R0), M (medium/focal R0), and H (higher R0) scenarios. We consider n= 3 extreme beliefs

over these scenarios, where each belief is a three-point distribution over the three scenarios:

• Representative belief: the probability distribution on L, M, H is (0,1,0);

• Optimistic belief: the distribution is (ε,1− ε,0);

• Pessimistic belief: the distribution is (0,1− ε, ε).

The parameter ε, which we refer to as the ambiguity level, allows controlling the amount of ambi-

guity in the formulation: note that a larger ε increases the size of the ambiguity set. We consider

ε values from {0,0.33,0.67,1}, with ε= 1 yielding the full probability simplex.

The naming of scenarios is consistent with the effect on the total loss objective. Because total

losses strictly increase with R0, the three scenarios are naturally sorted: the optimistic belief yields

the smallest expected loss, followed by the representative belief and the pessimistic belief. This also

allows us to readily identify the belief that achieves the worst-case expected loss in the problem:

that is always the pessimistic one.

We set up the robust formulation with ambiguity in the pDg multiplier of the 65+ y.o. age group

in a similar fashion, considering the values {0.01,0.05,0.1, . . . ,1.45,1.5}.

Dependence on ambiguity. In Figure 7 we report the gains of AGE-ACT over NO-TARGET

as a function of the ambiguity parameter ε for χ ∈ {30×,60×,90×}, for ambiguity in R0 and for

ambiguity in the pDg multiplier.

Note that the magnitude of gains from targeting remains quite high, exceeding 40% in some

cases with χ= 30× and exceeding 20% in some cases with χ= 90×, and across all ambiguity levels

ε. This suggests that targeting remains quite relevant even under ambiguity.
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Figure 7 Heatmap with the relative gains of ROLD AGE-ACT vs. ROLD NO-TARGET, as a function of the

ambiguity probability parameter and (a) the reproduction number R0; (b) the multiplier of the prob-

ability of death given infection pDg of age group 65+ y.o. (The figure is best viewed in color.)

A critical insight is that the magnitude of gains does not depend monotonically on the ambiguity

level ε, contradicting the naive intuition that simpler, less targeted policies would be more effective

in highly ambiguous environments. In fact, drawing attention to how gains depend on R0 and

ambiguity in Figure 7a, we observe that there are certain values of R0 where gains increase in

ambiguity, and other values where the opposite happens. Moreover, the monotonicity switches back

and forth as R0 increases. For example, for χ = 60×, the gains are first increasing in ambiguity

(for R0 = 0.5 or 1), then decreasing (for R0 = 3), then increasing again (for R0 = 5.5), and finally

decreasing (for R0 = 8).
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This pattern is driven entirely by the non-monotonic dependency of gains on (R0, χ) that we

documented in Figure 4a. To appreciate this, recall from our earlier discussion that the “pessimistic”

belief, which places probability ε on the H scenario, is the belief that yields the worst-case expected

cost. Therefore, when the M scenario (with the focal value for R0) and the H scenario (with the

higher value for R0) and the considered χ correspond to a region of the heatmap in Figure 4a where

gains are increasing in R0, then gains will also increase with ambiguity in the robust model. And

similarly, when the M and H scenarios (and χ) are such that gains in Figure 4a decrease with R0,

the gains will also decrease with ambiguity in the robust model. As a concrete example, for χ= 60,

the values R0 = 0.5 and R0 = 5.5 both correspond to points in the left panel of Figure 4a where

gains are increasing in R0 (the first peak and the “beginning” of the second peak, respectively);

this explains why the corresponding vertical bands in the middle panel of Figure 7a show gains

that are increasing in ambiguity at R0 = 0.5 and R0 = 5.5. The insight that gains in the robust

model are increasing (decreasing) in ambiguity when gains increase (decrease) with the parameter

remains robust when considering ambiguity in pDg instead of R0 (Figure 7b).

Importantly, we note that our qualitative findings would hold even if we considered other robust

formulations. In effect, any robust model where the support of the distributions in the ambiguity

set involves both low and high values of R0 would yield the same qualitative behavior, whereby

gains from targeting can either increase or decrease with ambiguity. What drives this is simply the

fact that total loss increases in R0 and the fact that gains depend in non-monotonic ways on R0,

as our stylized results in Section 4 proved and our empirical results in Section 6.3 confirmed.

These results show that targeting may achieve significant gains even in the context of early

pandemic decision-making, when parameters are uncertain and policymakers are ambiguity-averse.

That ambiguity has subtle effects on the gains from targeting—which may be challenging to intuit

or quantify—further underscores the need for a structured optimization approach such as ROLD,

which can help develop a precise understanding and make important policy decisions.
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8. Discussion

We conclude by discussing a number of directions for future research that our current framework

and results do not tackle.

Implementability. A potential hurdle to using highly targeted policies is that they are more

complex to operationalize and more contentious than uniform policies. This is particularly the case

with age-based targeting. Although outside our scope here, one could design policies that function

as proxies to ROLD AGE-ACT without explicit age targeting. For example, one could consider

curfew policies that restrict activities at targeted times of day, uniformly for all age groups. Because

different age groups perform distinct activities throughout the day, curfews have the potential to

implicitly differentiate based on age. Another direction would be to consider recommending—as

opposed to enforcing—separate activity levels for each age group, while accounting for imperfect

population compliance. Our preliminary experiments indicate that both of these variants could

still retain a significant fraction of the benefits of targeting discussed in this paper.

Endogenous feedback. There is growing evidence of the presence of behavioral dynamics chang-

ing pandemic parameters such as transmission rates (Rahmandad et al. 2021, 2022). For example,

Rahmandad et al. (2022) build a forecast model where transmission rates parametrically depend

on perceived risk of death (using lagged per capita deaths as proxy) and show that endogenizing

feedback into a compartmental model can lead to significant improvements in accuracy. In prin-

ciple, such endogeneous feedback loops could be built into our decision model, at the expense of

increased computational and estimation complexity.

Other pandemic mitigation tools. Our paper is a case study in the effectiveness of targeting,

focused on a single intervention mechanism. Clearly, confinements are only one of the intervention

tools available to policymakers and should be used in conjunction with vaccinations, mask wearing,

testing and contact tracing in any real-world policy. In fact, Group et al. (2023), Jentsch et al. (2021)

observe the importance of an integrated, system-aware approach for future pandemic preparedness.

A benefit of our framework is flexibility—though outside the scope of our paper, we believe these

other interventions, as well as more nuanced interactions between them, could be built into our

model and the ROLD framework.
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E-companion to Quantifying and Realizing the Benefits of
Targeting for Pandemic Response

EC.1. Dynamics of the Controlled SEIR Epidemic Model

We write down a set of discrete-time dynamics for the controlled SEIR model. We use notation
∆Z(t) to denote Z(t+ 1)−Z(t). For all groups g ∈ G, we have:

∆Ng(t) =−µ · pDg · Ig(t) (EC.1)

∆Sg(t) =−β ·Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t)) · Ih(t)

Nh(t)

)
(EC.2)

∆Eg(t) = β ·Sg(t) ·

(∑
h∈G

cg,h(`g(t), `h(t)) · Ih(t)

Nh(t)

)
−σ ·Eg(t) (EC.3)

∆Ig(t) = σ ·Eg(t)−µ · pDg · Ig(t)︸ ︷︷ ︸
deceased

−µ · (1− pDg ) · Ig(t)︸ ︷︷ ︸
recovered

(EC.4)

∆Rg(t) = µ · (1− pDg ) · Ig(t) (EC.5)

∆Dg(t) = µ · pDg · Ig(t). (EC.6)

We now provide justification for how we account for social contacts and, in particular, for the
expressions in (EC.2) and (EC.3). Fix a person i in age group g ∈ G, in state Sg. Then:

Pr

(⋃
h∈G

{i got infected through socializing with age group h}

)
(EC.7)

= Pr

(⋃
h∈G

{i got infected through socializing with individuals in Ih}

)
(EC.8)

= 1−Pr ({i did not get infected through socializing with individuals in any Ih for any h∈ G})
(EC.9)

= 1−
∏
h∈G

Pr ({i did not get infected through socializing with individuals in Ih}) (EC.10)

= 1−
∏
h∈G

(
1−β Ih(t)

Nh(t)

)cg,h
(EC.11)

≈ 1−
∏
h∈G

(
1−βcg,h

Ih(t)

Nh(t)

)
(EC.12)

≈ β
∑
h∈G

cg,h
Ih(t)

Nh(t)
. (EC.13)

In (EC.11) we use the following reasoning. Having fixed person i in age group g, (a) any contact with
a randomly chosen individual in group h will result in person i getting infected with probability
β Ih(t)

Nh(t)
, and (b) the number of person i’s contacts with individuals in age group h is given by

cg,h = cg,h(`g(t), `h(t)). Finally, person i getting infected as the result of a contact with someone
from group h is considered to be an independent event across different contacts. Therefore, we
raise the probability of no infection from a contact to the power of the number of contacts. (EC.12)
and (EC.13) follow from linear approximations.
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By taking the expectation of random variable∑
i∈Sg

1{i got infected through socializing},

we retrieve the expressions in (EC.2) and (EC.3).

EC.2. Details of the Economic Model
As discussed in Section 3.3, economic losses come from three separate sources:

Effect of confinement. To account for confinement, we make the economic value generated
per day by an individual in group g in each SEIR chamber explicitly depend on the enforced
confinement in the population. Recall that for a group g, the activity levels `g specify the level of
each activity allowed for that group as compared to normal course, and ` = [`g]g∈G. We denote the
economic value generated by a member of g per day by vg(`). We remark that vg(1) corresponds
to the economic value generated by an individual under normal circumstances.

The vg(`) specific to a group can be of two types: (a) wages from employment and (b) future
wages from employment due to schooling. Naturally, depending on the age group, both, one, or
neither of these will actually contribute to economic value. Distinguishing whether the specific
group is comprised of school age, employable or retired population, we define

vg(`) :=


vschooling
g (`) + vemployment

g (`) if g = 0-19 y.o.

vemployment
g (`) if g = 20-64 y.o.

0 otherwise.

(EC.14)

We break down the definitions of vemployment
g (`) and vschooling

g (`) below:
• Value from employment vemployment

g (`). The value generated from employment is a func-
tion of the confinement level in the work activity, but also of the confinement levels in leisure,
transport, as well as other activities. As an example, we expect the economic value generated
by those employed in restaurants, retail stores, etc. to depend on foot traffic levels, which in
turn are driven by the confinement levels in leisure, transport and other activities across all
groups.

Our model for employment value is a linear parametrization of these confinement decisions;
specifically, vemployment

g (`) is linear in `workg and the weighted average of `transport, `leisure and `other

across these three activities and all groups g ∈ G:

vemployment
g (`) :=wg ·

(
νwork · `workg + νother activities ·

(
1

|G|
∑
h∈G

w transport`transporth + w leisure`leisureh + w other`otherh

)
+ νfixed

)
.

(EC.15)

Additionally, νwork, νother activities and νfixed are activity level sensitivity parameters such that
νwork · 1 + νother activities · 1 + νfixed = 1; under fully open activity, they induce a multiplier of
1 in (EC.15). Then wg measures the overall daily employment value of a typical member of
group g under no confinement, and is equal to vemployment

g (1). The weights w transport,w leisure,w other

capture the relative importance of each of these three activities for employment value. For our
baseline setting, we take w transport = w leisure = w other = 1/3.

We estimate the coefficients of this model from data, as we describe in detail in
Appendix EC.6.

• Value from schooling vschooling
g (`). A day of schooling for the individuals in the 0-19 year-

old age group results in economic value, equal to a day of wages that members of these groups
would gain in the future. We use the salary of the 20-64 year-old group multiplied by a factor,
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and we discount for a number of years corresponding to the difference between the midpoint
of the 0-19 year-old age group and the beginning of the 20-64 year-old group. Concretely, the
discounting factor we apply is

δ0-19 y.o. = (1 + r)−10,

where r is the discount rate. We further multiply the wage by f0-19 y.o., which is an estimate
of the fraction of the 0-19 year-old age group that is in school.12 Lastly, we also use a mul-
tiplicative factor θ for sensitivity analysis: θ reflects that an additional day of schooling may
have a multiplier effect in future wages, as well as the fact that schooling can be continued
online during lockdowns. We take θ= 0.5 in our experiments.

Thus, the definition for value of school days is

vschooling
0-19 y.o. (`) := θ · f0-19 y.o. · δ0-19 y.o. · vemployment

20-64 y.o. (1) · `school
0-19 y.o.. (EC.16)

Effect of deaths during the pandemic. We capture the economic effect of deaths during the
pandemic by assuming that if at some time period, an individual in group g is in SEIR chamber
Dg, then they generate no economic value.

Effect of lost future wages due to death. We account for a deceased individual’s lost wages
which they would have earned from their current age until retirement age, given the prevailing
wage curve under normal circumstances, {vg(1)}g∈G. For group g, we set the current age to the
midpoint of the age group. We discount the resulting cash flows by an annualized interest rate. We
denote the resulting lost wages amount by vlife

g , and we have

vlife
0-19 y.o. :=

64∑
τ=10

1

(1 + r)τ−10
·
(
1{10≤ τ ≤ 19} · vemployment

0-19 y.o. (1) +1{20≤ τ ≤ 64} · vemployment
20-64 y.o. (1)

)
,

(EC.17)

vlife
20-64 y.o. :=

64∑
τ=42

1

(1 + r)τ−42
· vemployment

20-64 y.o. (1). (EC.18)

Last, we define a quantity V which represents the economic value that would be generated across
all groups g ∈ G, during the time of the pandemic, under a “no pandemic” scenario. More precisely,
to calculate V we assume that at time t= 0 all the infected population is instantaneously healed
and able to generate full economic value vg(1). Thus,

V :=
T−1∑
t=0

∑
g∈G

vg(1) ·Ng(0). (EC.19)

Note that this term is a constant and does not depend on the policy followed by the policymaker.

12 This is due to the fact that a small fraction of the members of the 10-19 year old group are already in workforce.
We do not count the value of lost schooling for them. In the experiments for Île-de-France, we estimate f0-19 y.o. =
1− (0.1876 · 764916/3140965)≈ 0.9543, where 18.76% is the regression-estimated employment rate within the 15-19
year olds, 764916 is the number of 15-19 year olds, and 3140965 is the number of 0-19 year olds.
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EC.3. Additional Details and Proofs for Section 4
We first define all state updates and then express the objective.

State updates. Recall that confinements are only applicable in the first period, and in the second
period all activities are fully open. Let u = [u1

1, u
1
2, u

2
1, u

2
2]ᵀ, where uag = `ag(0) denote the activity

levels in period t= 0. (Note that we sort components by activity, so that the first two components
are for activity 1 and the next two for activity 2.) Then, defining the force of infection during
period t for any group g as:

λg(0) = β
∑
a∈A

∑
h∈G

Ca
gh u

a
gu

a
hSg(0)

Ih(0)

Nh(0)
, λg(1) = β

∑
a∈A

∑
h∈G

Ca
ghSg(1)

Ih(1)

Nh(1)
, (EC.20)

we can express the state evolution for each period t∈ {0,1} as:

Sg(t+ 1) = Sg(t)−∆t λg(t) Ig(t+ 1) = Ig(t) + ∆t

(
λg(t)−µgIg(t)

)
, (EC.21a)

Rg(t+ 1) =Rg(t) + ∆t

(
1− pDg

)
µgIg(t) Dg(t+ 1) =Dg(t) + ∆t p

D
g µgIg(t). (EC.21b)

Importantly for the subsequent developments, the total number of deaths in group g during the
planning horizon is:

Dg(2) = β pDg µg
[
∆0 Ig(0) + ∆1 Ig(1)] = constant +β∆0 ∆1 p

D
g µgλg(0),

which only depends on the decisions u through the force of infection λg(0) from (EC.20).

Economic Value, Total Deaths. Let vag denote the per-person, per-unit time economic value
generated by one individual in group g engaging in activity a and define r(g,a) := ∆0v

a
gNg(0) for

every g ∈ G and a∈A and r= [r1
1, r

1
2, r

2
1, r

2
2]ᵀ. The economic value generated in period t, EV(t), is:

EV(0) =
∑
g∈G

∑
a∈A

∆0 v
a
g Ng(0)uag = rᵀu

EV(1) =
∑
g,a

∆1v
a
g Ng(1) =

∑
g,a

∆1 v
a
g

[
Ng(0)−∆0 p

D
g γg Ig(0)

]
Note that only EV(0) depends on the decisions u, and EV(1) is a constant. We can then express
the total economic loss as:

Economic Loss(u) = V −EV(0)−EV(1) +
∑
g∈G

vlife
g ·Dg(2).

Our objective (4) corresponding to total losses J(u) then becomes equivalent to:

J(u) = V −EV(0)−EV(1) +
∑
g∈G

(χ+ vlife
g ) ·Dg(2).

EC.3.1. Proofs for Section 4.2

Proof of Proposition 1 The objective of minimizing total losses J(u) is equivalent here to max-
imizing the total net welfare W (u), given by the total economic value generated during the two
periods minus the total penalty associated with the deaths incurred:

W (u) =
T−1∑
t=0

EV(t)−
∑
g∈G

(χ+ vlife
g )Dg(2). (EC.22)
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Replacing the expressions for EV(0),EV(1),Dg(2) and using λg(0) from (EC.20) yields:

W (u) =Wconst + rᵀu− 1

2
uᵀQu, (EC.23)

where Wconst is independent of u and the matrix Q is exactly as described in (7a). �

Proof of Proposition 2. Recall that problem (6) is separable across activities. For each a ∈A,
letting ua = [ua1, u

a
2]ᵀ and ra = [ra1 , r

a
2 ]ᵀ, the resulting problem can be written compactly as:

max
ua∈[ε,1]2

(ra)ᵀua− 1
2

(ua)ᵀQaua (EC.24)

The proof of part (i) follows directly from Proposition EC.1 below.

(ii) To simplify notation, we omit the superscript a and prove the results for g= 1, without loss of
generality. With the change of variables ũ1 =−u1, the objective in (EC.24) becomes:

W (ũ1, u2) =−r1 ũ1 + r2 u2− 1
2

[
B1 u

2
1− 2B12 ũ1 u2 +B2 u

2
2

]
.

Because all the coefficients appearing are positive, it can be readily checked that:

∂2W

∂ũ1 ∂u2

=B12 > 0
∂2W

∂ũ1 ∂r1

=−1
∂2W

∂ũ1 ∂B12

= u2 ≥ 0
∂2W

∂ũ1 ∂B2

= 0.

W is therefore supermodular in (ũ1, u2) and in (ũ1, θ) for θ ∈Θ := {−r1,B1,B12}. Because we are
maximizing the function W (u) over the lattice [−1,−ε]× [ε,1], classic results in complementarity
(Theorem 2.8.2 in Topkis 1998) can be invoked to prove that ũ?1 is increasing in θ, which in turn
means u?1 is decreasing in θ, for every θ ∈Θ. Recalling the expressions of B1,B12 and the expressions
of A1,A2 then yields all the claimed comparative statics for u?1, except those with respect to Nh(0)
(h= 1,2), C22, and ca2. To see that u?1 increases with N1,2(0), it suffices to note that u?1 increases with
r1 (which increases with N1(0)) and decreases with B1 and B12 (which decrease with N1(0),N2(0)).
The results with respect to C22 and ra2 follow because although their direct effect on ũ1 is zero (as
the second order mixed derivatives are zero), an increase in these variables would increase u?2, and
the supermodularity of W in (ũ1, u2) would then lead to the increase in ũ1 and the decrease in u1.

Proposition EC.1 (Optimal Dual-Targeted Policy). For each activity a ∈ A, the optimal
dual-targeted solution (uag)

? is given by Table 1 and the conditions therein if Da
B ≥ 0, and is given

by one of the expressions in Cases 2-9 from Table 1 if Da
B < 0.

Proof. Subsequently, we rewrite this as a minimization and drop the superscript a.

min
u1,u2

1
2

[
B1 u

2
1 + 2B12 u1 u2 +B2 u

2
2

]
− r1 u1− r2 u2

s.t. ε≤ u1 ≤ 1, ε≤ u2 ≤ 1.
(EC.25)

The objective function is component-wise concave in each ug because Bg > 0; it is jointly concave
in [u1, u2] if DB =B1B2−B 2

12 ≥ 0.
Because our problem trivially admits a Slater point (e.g., ug = (1+ε)/2 for every g ∈ G), the con-

straint qualification conditions are satisfied and the KKT conditions are necessary for optimality.
Moreover, if DB ≥ 0, the problem is convex and these conditions are sufficient for optimality.
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We analyze the KKT optimality conditions. With ν and η as the dual variables corresponding
to the constraints −x≤ 0 and x− 1≤ 0, respectively, we can write the KKT system as:

Stationarity: B1u1 +B12u2− r1− ν1 + η1 = 0,

B12u1 +B2u2− r2− ν2 + η2 = 0;

Feasibility: ε≤ ug ≤ 1, νg, ηg ≥ 0 (g= 1,2);

Complementary slackness: νg(ε−ug) = 0, ηg(1−ug) = 0 (g= 1,2).

(KKT)

We consider each case separately, depending on which bounds on the variables are active. “I” refers
to an interior solution, “L” refers to the case when lower bound ug ≥ ε is active (which implies
ηg = 0) and “U” refers to the case when the upper bound ug ≤ 1 is active (which implies νg = 0).

Case (I,I). All bounds inactive: νg = ηg = 0. We can solve the system to obtain:

u1 =
r1B2− r2B12

DB

, u2 =
r2B1− r1B12

DB

.

Feasibility. An interior solution DB > 0, which is equivalent to requiring that the objective function
is concave in u (without this, a strictly interior solution is not possible). Moreover, this also requires
ε < ug < 1, i.e.

ε <
r1B2− r2B12

DB

< 1, ε <
r1B2− r2B12

DB

< 1.

If these hold, (u1, u2) above is optimal.

Case (L,I). Fix u1 = ε (η1 = 0, ν1 ≥ 0), keep ε < u2 < 1 (ν2 = η2 = 0). Stationarity gives

u2 =
r2−B12ε

B2

, ν1 =B1ε+
B12(r2−B12ε)

B2

− r1.

Conditions: ε < r2
B2
< 1, r1 ≤B1ε+ B12(r2−B12ε)

B2
, ensuring u2 ∈ (ε,1) and ν1 ≥ 0.

Case (I,L). Symmetric to (L,I). Case (U,I). Fix u1 = 1 (ν1 = 0, η1 ≥ 0), 0<u2 < 1 (ν2 = η2 = 0).

u2 =
r2−B12

B2

, η1 = r1−B1−
B12

B2

(r2−B12).

Conditions: ε < r2−B12
B2

< 1 and r1B2− r2B12 ≥DB, which ensures that η1 ≥ 0.

Case (I,U). Symmetric to (U,I).

Case (L,L). Fix u1 = u2 = ε. This implies η1 = η2 = 0. We can then express

ν1 = (B1 +B12)ε− r1, ν2 = (B2 +B12)ε− r2.

Conditions: r1 ≤ ε
(
B1 +B12

)
and r2 ≤ ε

(
B2 +B12

)
.

Case (L,U). Fix u1 = ε (so η1 = 0) and u2 = 1 (so ν2 = 0). We get:

ν1 =B1ε+B12− r1, η2 = r2−B12ε−B2.

Conditions: r1 ≤B1ε+B12 and r2 ≥B2 +B12ε.

Case (U,L). Symmetric to (L,U).
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Case (U,U). Fix u1 = u2 = 1 (νg = 0, ηg ≥ 0).

η1 =B1 +B12− r1, η2 =B2 +B12− r2.

Conditions. r1 ≥B1 +B12, r2 ≥B2 +B12.

When DB > 0, these conditions are necessary and sufficient for optimality. When DB ≤ 0, note
that no interior solution is possible (that is, case (I,I) does not admit a feasible solution). There-
fore, in an optimal solution u?g, there exists at least one g ∈ G such that u?g ∈ {ε,1}. Our objective
restricted to the other variable uh, h 6= g will be convex, so the same optimality conditions dis-
cussed in Cases 2-9 would arise and the optimal solution would be given by one of the expressions
corresponding to those cases.

Proposition EC.2 (Age Group-Based Targeting). The optimal group-based targeted policy
[u?1, u

?
2]ᵀ can be obtained from Table 1 by replacing [ra1 , r

a
2 ]ᵀ with [

∑
a∈A r

a
1 ,
∑

a∈A r
a
2 ]ᵀ, replacing Ba

g

with BΣ
g :=

∑
a∈AB

a
g , replacing Ba

12 with BΣ
12 =

∑
a∈AB

a
12, and replacing DB with DΣ

B =BΣ
1 B

Σ
2 −

(BΣ
12)2. With these replacements, the optimal solution is given by Table 1 and the conditions therein

if DΣ
B ≥ 0, and is given by one of the expressions in Cases 2-9 from that table if DΣ

B < 0.

Proof of Proposition EC.2. The optimization problem for finding group-specific decisions has
the same structure as the activity-specific problem we considered in (EC.24), with the only dif-
ference that the first-stage reward becomes rg :=

∑
a∈A r

a and the matrix Qa is replaced with∑
a∈AQ

a. As such, the optimal solution is characterized by a counterpart of Table 1 obtained
with the replacements mentioned in the statement of the proposition. The comparative statics also
readily follow from an analogous argument to that used in the proof of Proposition 2, because the
optimization problems are structurally identical. We omit details for brevity.

Proposition EC.3 (Activity-Based Targeting). The optimal activity-based targeted policy is
separable by activity; for each activity a, the optimal activity level u?a and resulting welfare are
given in Table EC.1, where Ra := ra1 + ra2 and Ba := Ba

1 + 2Ba
12 +Ba

2 . The comparative statics of
the optimal policy are the same as that of the optimal AGE-ACT policy, in Proposition 2.

Condition Optimal intensity ua? Welfare W a
ACT

Ra ≥Ba ua? = 1 Ra− 1

2
Ba

Baε <Ra <Ba ua? =
Ra

Ba

(Ra)2

2Ba

Ra ≤Baε ua? = ε Raε− 1

2
Baε2

Table EC.1 Optimal activity levels and resulting welfare for each action a.

Proof. With activity-based targeting, the optimization problem (EC.25) reduces to maximizing
the concave quadratic function Ra u− 1

2
Ba u2 with u∈ [ε,1], so the results immediately follow. The

comparative statics also readily follow because the objective is trivially supermodular in (u,Ra)
and also (u,−Ba) and the feasible set is a lattice, so u? is increasing in Ra and decreasing in Ba.
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EC.3.2. Proofs for Section 4.3

Proposition EC.4 (Gains From Targeting). For each policy π ∈ {NT,AGE,ACT,AA},
define the following thresholds:

χπmin(β) :=


∑

g,aωg,aχ
min
g,a π= NT,

ming
∑

a λg,aχ
min
g,a π= AGE,

mina
∑

g ρg,aχ
min
g,a π= ACT,

ming,aχ
min
g,a π= AA.

χπmax(β) :=


∑

g,aωg,aχ
max
g,a π= NT,

maxg
∑

a λg,aχ
max
g,a π= AGE,

maxa
∑

g ρg,aχ
max
g,a π= ACT,

maxg,aχ
max
g,a π= AA.

(EC.26)

where for every group-activity pair (g, a)∈ G ×A, we define:

χmin
g,a (β) :=

rag −β∆0∆1Kg,a

β∆0∆1Lg,a
, χmax

g,a (β) :=
rag − εβ∆0∆1Kg,a

εβ∆0∆1Lg,a
(EC.27)

and:

λg,a =
Lg,a∑
a′ Lg,a′

, ρg,a =
Lg,a∑
g′ Lg′,a

, ωg,a =
Lg,a∑

g′,a′ Lg′,a′
,

and Lg,a,Kg,a are given by

Lg,a :=

[
κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+κḡ ·Ca

ḡg ·
Ig(0)

Ng(0)

]
Kg,a :=

[
vlife
g ·κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+ vlife

ḡ ·κḡ ·Ca
ḡg ·

Ig(0)

Ng(0)

]
κg := pDg µgSg(0) =Ag/(χ+ vlife

g ).

(EC.28)

Then, the following holds:

(i) there are zero gains from targeting if 0≤ χ≤ χπmin(β) or if χ≥ χπmax(β).

(ii) χπmin(β) and χπmax(β) are piecewise linear increasing functions of 1/β.

(iii) The four thresholds satisfy the inequalities:

χAA
min ≤ χAGE

min , χ
ACT
min ≤ χNT

min and χAA
max ≥ χAGE

max , χ
ACT
max ≥ χNT

max.

Proof of Proposition EC.4. (i) Fix a transmission rate β > 0 and for a group g ∈ G, let ḡ denote
the other group (i.e., h∈ G with h 6= g).

AGE-ACT. Recall the optimal AA policy from Proposition EC.1. Specifically:

u? = ε ·1 ⇔ case (L,L) for every a∈A ⇔ rag ≤ ε
(
Ba
g +Ba

12

)
, ∀(g, a)∈ G ×A (EC.29a)

u? = 1 ⇔ case (U,U) for every a∈A ⇔ rag ≥Ba
g +Ba

12, ∀(g, a)∈ G ×A. (EC.29b)

Recall the definitions of Ba
g and Ba

12, repeated below for convenience:

Ba
g = 2β∆0 ∆1AgC

a
gg

Ig(0)

Ng(0)
∀g ∈ G, Ba

12 = β∆0 ∆1

(
A1C

a
12

I2(0)

N2(0)
+A2C

a
21

I1(0)

N1(0)

)
,

Ag = (χ+ vlife
g )pDg µg Sg(0) for g ∈ G.

Then, the sum Ba
g +Ba

12 can be written to highlight the dependency on β and χ as:

Ba
g +Ba

12 = β∆0∆1

[
Lg,a ·χ+Kg,a

]
, where

Lg,a = β∆0∆1

[
κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+κḡ ·Ca

ḡg ·
Ig(0)

Ng(0)

]
Kg,a = β∆0∆1

[
vlife
g ·κg

(
2Ca

gg ·
Ig(0)

Ng(0)
+Ca

gḡ ·
Iḡ(0)

Nḡ(0)

)
+ vlife

ḡ ·κḡ ·Ca
ḡg ·

Ig(0)

Ng(0)

]
κg := pDg µgSg(0) =Ag/(χ+ vlife

g ).

(EC.30)
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In that case, we can readily define for each (g, a)∈ G ×A the thresholds

χmin
g,a (β) :=

rag −β∆0∆1Kg,a

β∆0∆1Lg,a
, χmax

g,a (β) :=
rag − εβ∆0∆1Kg,a

εβ∆0∆1Lg,a
(EC.31)

and note that (EC.29a) holds if and only if χ ≥ χmax
g,a (β), whereas (EC.29b) holds if and only if

χ≤ χmin
g,a (β). Therefore, we conclude that χπmax(β) and χπmax(β) exist for π= AA, with:

χπmin(β) := min
(g,a)∈G×A

χmin
g,a , χπmax(β) := max

(g,a)∈G×A
χmax
g,a .

AGE. We can repeat the same reasoning for the AGE policy. From Proposition EC.1, the opti-
mization problem for AGE is identical to that for AGE-ACT, with the sole difference that the
AGE objective involves quantities rg =

∑
a r

a
g , Bg =

∑
aB

a
g , B12 =

∑
aB

a
12 aggregated over activi-

ties. Thus, the conclusions for AGE follow from those for AGE-ACT by replacing the Lg,a with∑
a∈ALg,a and Kg,a with

∑
a∈AKg,a. Specifically, with weights λg,a =

Lg,a∑
a′ Lg,a′

, we define:

χmin
g (β) :=

∑
a r

a
g −β∆0∆1

∑
aKg,a

β∆0∆1

∑
aLg,a

=
∑
a∈A

λg,a ·χmin
g,a (β), ∀g ∈ G

χmax
g (β) :=

∑
a r

a
g − εβ∆0∆1

∑
aKg,a

εβ∆0∆1

∑
aLg,a

=
∑
a∈A

λg,a ·χmax
g,a (β), ∀g ∈ G.

Then, we obtain the desired result for π= AGE by setting:

χπmin(β) := min
g∈G

χmin
g , χπmax(β) := max

g∈G
χmax
g .

ACT. The same reasoning applies to ACT. For activity a∈ {1,2} the policymaker chooses a single
control ua. Let Ra = ra1 + ra2 and Ba =Ba

1 + 2Ba
12 +Ba

2 . Then, from Proposition EC.3, we have that

(ua)? = ε ⇔ Ra ≤ εBa and (ua)? = 1 ⇔ Ra ≥Ba
g .

We can readily see that Ba =
∑

g∈G Lg,a ·χ+
∑

g∈GKg,a, where Lg,a and Kg,a are defined as in AGE-

ACT. Then, following the same logic as for AGE but with weights ρg,a given by ρg,a =
Lg,a∑
g′ Lg′,a

, we

define the following thresholds:

χmin
a (β) :=

∑
g r

a
g −β∆0∆1

∑
gKg,a

β∆0∆1

∑
g Lg,a

=
∑
a∈A

ρg,a ·χmin
g,a (β), ∀a∈A

χmax
a (β) :=

∑
g r

a
g − εβ∆0∆1

∑
gKg,a

εβ∆0∆1

∑
g Lg,a

=
∑
a∈A

ρg,a ·χmax
g,a (β), ∀a∈A.

Then, we obtain the desired result for π= ACT by setting:

χπmin(β) := min
a∈A

χmin
a , χπmax(β) := max

a∈A
χmax
a .

NO-TARGET. The same reasoning applies to NO-TARGET. With R =
∑

g,a r
a
g and B =∑

a∈A(Ba
1 + 2Ba

12 +Ba
2 ), we have that

u? = ε ⇔ R≤ εB and u? = 1 ⇔ R≥B.
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With the same logic as for AGE and ACT, with weights ωg,a given by ωg,a =
Lg,a∑

g′,a′ Lg′,a′
, we obtain

our desired thresholds for policy π= NT:

χπmin(β) :=

∑
g,a r

a
g −β∆0∆1

∑
g,aKg,a

β∆0∆1

∑
g,aLg,a

=
∑
a∈A

ωg,a ·χmin
g,a (β)

χπmax(β) :=

∑
g,a r

a
g − εβ∆0∆1

∑
g,aKg,a

εβ∆0∆1

∑
g,aLg,a

=
∑
a∈A

ωg,a ·χmax
g,a (β).

In conclusion, the desired thresholds for each policy π ∈ {NT,AGE,ACT,AA} are

χπmin(β) :=


∑

g,aωg,aχ
min
g,a π= NT,

ming
∑

a λg,aχ
min
g,a π= AGE,

mina
∑

g ρg,aχ
min
g,a π= ACT,

ming,aχ
min
g,a π= AA.

χπmax(β) :=


∑

g,aωg,aχ
max
g,a π= NT,

maxg
∑

a λg,aχ
max
g,a π= AGE,

maxa
∑

g ρg,aχ
max
g,a π= ACT,

maxg,aχ
max
g,a π= AA.

(EC.32)

where the weights are:

λg,a =
Lg,a∑
a′ Lg,a′

, ρg,a =
Lg,a∑
g′ Lg′,a

, ωg,a =
Lg,a∑

g′,a′ Lg′,a′
.

and Lg,a,Kg,a are defined in (EC.30) and χmin
g,a (β), χmax

g,a (β) are defined in (EC.31).

(ii) Recall from (EC.31) that:

χmin
g,a (β) :=

rag −β∆0∆1Kg,a

β∆0∆1Lg,a
, χmax

g,a (β) :=
rag − εβ∆0∆1Kg,a

εβ∆0∆1Lg,a
.

Because Lg,a,Kg,a > 0, both χmin
g,a (β) and χmax

g,a (β) strictly decrease in β. Moreover, each bound tends

to the strictly negative value −Kg,a

Lg,a
< 0 as β→+∞ and tends to +∞ as β→ 0 (because rg,a > 0).

Because taking convex combinations, minimums or maximums of these functions preserves these
properties, we can conclude with the desired result.

(iii) The inequalities between the thresholds follow from (EC.32), because a convex combination
lies between the minimum and the maximum of the elements in the combination.

(iv) It suffices to prove this result for the parameter regime wherein all policies have an interior
solution. This parameter regime trivially belongs to the region of interest (because outside that
region, the NO-TARGET policy would not have an interior solution). For this interior parameter
regime, the result follows from Proposition EC.5.

Proposition EC.5. Consider the parameter regime wherein all policies have interior optimal
activity levels, i.e., u? ∈ (ε,1)4. Then, the optimal net welfare values are:

W ?
NT =

R2

B
, where R :=

∑
a,g

rag , B =
∑
a

(Ba
1 + 2Ba

12 +Ba
2 ) (EC.33)

W ?
ACT =

1

2

∑
a

(Ra)2

Ba
, where Ra :=

∑
g

rag , B
a :=Ba

1 + 2Ba
12 +Ba

2 (EC.34)

W ?
AGE =

1

2
· (R1)2BG

2 + (R2)2BG
1 − 2R1R2B

G
12

DG
B

,where (EC.35)
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Rg :=
∑
a

rag , B
G
g :=

∑
a

Ba
g , B

G
12 :=

∑
a

Ba
12, D

G
B :=BG

1 ·BG
2 − (BG

12)2 (EC.36)

W ?
AA = 1

2

∑
a

ra2
1 Ba

2 + ra2
2 Ba

1 − 2ra1r
a
2B

a
12

Da
B

. (EC.37)

Moreover, the relative welfare gain of policy π ∈ {AGE,ACT,AA} with respect to NO-TARGET,

Gπ :=
W ?
π

W ?
NT

− 1,

is non-monotonic with respect to the parameters {rag}g∈G,a∈A,A1,A2.

Proof of Proposition EC.5 The expressions for W ?
π follow from Proposition EC.1, Proposi-

tion EC.3, and Proposition EC.2, by using the expression of the optimal interior solution. In the
subsequent derivations, we use the notation R,B,Ra,Ba,Rg,B

G
g ,B

G
12 defined in the expressions for

W ?
π above.

Change in rag . We claim that

∂GACT

∂rag
≥ 0 ⇐⇒ Ra

Ba
≥ (R1)2/B1 + (R2)2/B2

R1 +R2
. (EC.38)

Without loss of generality, take g= 1 and a= 1. Note that we can write:

GACT =
B

R2
H − 1, where H :=

(R1)2

B1
+

(R2)2

B2

Because only R1 and R=R1 +R2 depend on x in GACT and the derivative of each w.r.t x is 1, we
have that the derivative of GACT with respect to x has the same sign as B2R1 −B1R2, which is
exactly equivalent to (EC.38) in this case. The sign therefore depends on problem parameters. An
analogous argument can be used to show that GACT and GAA can also either increase or decrease
with rag .

Change in factor A1. Consider a change in the factor A1. The change in relative gains of the
ACT policy, d

dA1
GACT has the same sign as

Ψ =B1 ′
[

(R1)2

(B1)2
(B1−B) +

(R2)2

B2

]
+B2 ′

[
(R2)2

(B2)2
(B2−B) +

(R1)2

B1

]
,

where
B1′ := ∂A1

B1 = 2κ
∑
a

(Ca
11I1(0)/N1(0) +Ca

12I2(0)/N2(0))> 0, B2′ = 0.

Then, replacing terms, we arrive at the conclusion that Ψ> 0 if and only if R2B1 >R1B2. A similar
argument can be used for AGE and AGE-ACT, as well as with respect to A2. �

Proof of Proposition 3. Recall that the main conditions in the statement of the proposition
require that:

∃a∈A :

∑
g r

a
g∑

g Lg,a
>max

g

∑
a r

a
g∑

aLg,a
and ∃g ∈ G :

∑
aK

a
g∑

aLg,a
<min

a∈A

∑
gKg,a∑
g Lg,a

.

where Lg,a and Kg,a are given by (EC.30). To simplify notation slightly, let us define the parameters:

αmax := max
a

∑
g r

a
g∑

g Lg,a
, γmax := max

g

∑
a r

a
g∑

aLg,a
, Bmin := min

a

∑
gKg,a∑
g Lg,a

, Dmin := min
g

∑
aKg,a∑
aLg,a

,
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Then, the conditions above require that:

αmax >γmax and Bmin >Dmin. (EC.39)

Let us then recall from Proposition EC.4 the definitions of the ACT threshold χACT
max (β) and AGE

threshold χAGE
max (β), whose expressions we repeat for convenience:

χACT
max (β) = max

a∈A

(
αa
β
−βa

)
, where αa :=

∑
g r

a
g

εβ∆0∆1

∑
g Lg,a

, βa :=

∑
gKg,a∑
g Lg,a

χAGE
max (β) = max

b∈G

(
γg
β
− δg

)
, where γg :=

∑
a r

a
g

εβ∆0∆1

∑
aLg,a

, δg :=

∑
aKg,a∑
aLg,a

.

Under the premise (EC.39), as β→ 0, we have χACT
max (β)≥ χAGE

max (β), because the former has a larger
term multiplying 1/β. Similarly, (EC.39) also implies that as β gets sufficiently large, χACT

max (β)≥
χAGE

max (β). Because both χACT
max (β) and χAGE

max (β) are continuous functions of β, there exist13 β1 ≤ β2

such that χACT
max (β) > χAGE

max (β) for β < β1 and χACT
max (β) < χAGE

max (β) for β > β2. The results then
readily follow from the definitions of the thresholds. The reverse argument is identical. �

EC.4. Algorithmic Details for ROLD

In this section, we clarify the algorithmic details of the linearization-optimization procedure
described in Section 5.

EC.4.1. Linearized Dynamics

We first focus on how we build a linear model given k,Xk and ûk:T−1. In Step 2, our algorithm
builds an approximation of the state dynamics that is linear in the controls uk, . . . ,uT−1. Here, we
compute the coefficients for each ut explicitly. We introduce the notation:

At := I+ ∆t · ∇XFt(X̂t, ût) (EC.40)

Bt := ∆t · ∇uFt(X̂t, ût) (EC.41)

ct := ∆t ·
[
Ft(X̂t, ût)−∇XFt(X̂t, ût) · X̂t−∇uFt(X̂t, ût) · ût

]
, (EC.42)

where matrix At has dimensions |G||X | × |G||X |, matrix Bt has dimensions |G||X | × |G||U|, and
vector ct has dimensions |G||X |× 1. With this, we have

Xt+1 =AtXt +Btut + ct, t= 0, . . . T − 1.

We can then express the state Xt as14

Xt =

( ∏
τ=t−1,t−2,...,k

Aτ

)
Xk +

t−1∑
τ=k

( ∏
i=t−1,t−2,...,τ+1

Ai

)
Bτuτ +

t−1∑
τ=k

( ∏
i=t−1,t−2,...,τ+1

Ai

)
cτ .

(EC.43)

It is now possible to express the objective linearly in the decisions ut.

13 In general, we can show that at most three intersection points are possible in this case: instead of viewing the
curves as hyperbolas in 1/β, one can view them as piecewise linear functions in x = 1/β with at most two pieces,
which makes it easy to argue that at most three intersection points can exist.

14 In the expressions in (EC.43) and (EC.46), we follow the convention that a product of matrices over an empty set
of indices results in the identity matrix.
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EC.4.2. Objective Coefficients

Up to constants, the objective in (13) can be written as

T∑
t=k

(dt
ᵀXt +et

ᵀut) (EC.44)

with

dt
ᵀ =

{
ûᵀtM +γᵀ, if t < T

ηᵀ, if t= T,
et
ᵀ =

{
X̂ᵀ
tM

ᵀ, if t < T

0, if t= T .
(EC.45)

In (13) the decisions ut, for k≤ t≤ T − 1, will have objective coefficients:

X̂ᵀ
tM

ᵀ+
T−1∑
τ=t+1

(ûᵀτM +γᵀ)

( ∏
i=τ−1,τ−2,...,t+1

Ai

)
Bt +ηᵀ

( ∏
i=T−1,T−2,...,t+1

Ai

)
Bt. (EC.46)

This allows calculating the coefficients recursively. The detailed function CalculateObjec-
tiveCoefficients is defined in Algorithm 1.

Calculation of M ,γ and η. Expanding the objective (4), we have:

V−
T−1∑
t=0

∑
g∈G

(vg (`(t)) · (Sg(t) +Eg(t) + Ig(t) +Rg(t))) +
∑
g∈G

(
vlife
g +χ

)
·Dg(T ).

From this equation and the definitions of vg (·) in Appendix (EC.2), we can write M (where the
rows are indexed by the controls and the columns indexed by the compartments) as

M [`workg , Sg] =M [`workg ,Eg] =M [`workg , Ig] =M [`workg ,Rg] =

{
−wgνwork, if g = 0-19, 20-64 y.o.

0, otherwise.

M [`ah, Sg] =M [`ah,Eg] =M [`ah, Ig] =M [`ah,Rg]

=

{
−wgν

other activities

3|G| , if g = 0-19, 20-64 y.o., h∈ G, a∈ {transport, leisure,other}
0, otherwise.

M [`schoolg , Sg] =M [`schoolg ,Eg] =M [`schoolg , Ig] =M [`schoolg ,Rg] =

{
−θfgδgvemployment

20-64 y.o. (1), if g = 0-19 y.o.

0, otherwise.

M [·, ·] = 0, otherwise.

Similarly, we can write γ (indexed by the compartments for each group) as

γ[Sg] = γ[Eg] = γ[Ig] = γ[Rg] =

{
−wgνfixed, if g = 0-19, 20-64 y.o.

0, otherwise.
(EC.52)

γ[·] = 0, otherwise. (EC.53)

Finally, η (indexed by the compartments for each group) is

η=

 0, · · · ,0, (vlife
g +χ)︸ ︷︷ ︸

compartments of group g

,0, · · ·


ᵀ

g∈G

,

where the only non-zeros are in the indices corresponding to compartment Dg of each group g.
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Algorithm 1 CalculateObjectiveCoefficients

1: Initialization: X̄k :=Xk

2: for t= k, k+ 1, . . . , T − 1 do
3: Calculate coefficients for uτ in the period t summand of (EC.44) as:{

et
ᵀ, for τ = t

dt
ᵀĀt,τBτ , for τ = t− 1, t− 2, . . . , k

(EC.47)

where

Āt,τ :=

{
I, for τ = t− 1

Āt,τ+1Aτ+1, for τ = t− 2, t− 3, . . . , k.
(EC.48)

4: end for
5:

6: for t= T do
7: Calculate coefficients for uτ in the period T summand of (EC.44) as:

dT
ᵀĀT,τBτ , for τ = T − 1, T − 2, . . . , k (EC.49)

where

ĀT,τ :=

{
I, for τ = T − 1

ĀT,τ+1Aτ+1, for τ = T − 2, T − 3, . . . , k.
(EC.50)

8: end for
9:

10: Sum up the terms attributed to a common uτ :

eτ
ᵀ+

T∑
t=τ+1

dt
ᵀĀt,τBτ . (EC.51)

11: return Coefficients for uτ for each τ = k, k+ 1, . . . , T − 1

EC.4.3. Specifics of the Iterative Linearization-Optimization Procedure

Having defined the function CalculateObjectiveCoefficients, the Linearization-
Optimization function, which is the main subroutine of ROLD, is described in Algorithm 2. This
function builds the linear approximation for the remaining trajectory of the system, and optimizes
it via an LP in a trust region of an infinity-norm ε-ball around the initial nominal control û

(k)
k:T−1.

We denote that ε-ball by B∞ε (û
(k)
k:T−1).

Algorithm 2 Linearization-Optimization

Require: time period k, starting state Xk, nominal control initialization û
(k)
k:T−1

1: Calculate nominal trajectory X̂k:T from Xk and û
(k)
k:T−1

2: Run CalculateObjectiveCoefficients to compute the objective coefficients for decisions
ut, t= k, . . . , T − 1

3: Solve resulting linear program with additional trust region constraints uk:T−1 ∈B∞ε (û
(k)
k:T−1) to

obtain controls ζk:T−1

4: return ζk:T−1
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The full ROLD procedure is given in Algorithm 3. Within each period k, ROLD calls the
Linearization-Optimization function iteratively up to a termination condition, using the out-
put control to initialize the nominal control and the trust region for the next call of the function.
This still requires to choose an initialization of the k = 0 nominal control û

(0)
0:T−1; in our experi-

ments we initialize this with a control sequence obtained by a random seeding procedure, which
we describe below.

For the termination condition, we combine a fixed upper bound on the number of iterations with a
condition that we do not repeat the control sequences produced by Linearization-Optimization,
in order to avoid cycles. The fixed upper bound on the number of iterations is set so as to ensure
that for each k, every confinement decision in uk:T−1 can be changed to any value in [0,1] with
ε-length steps, i.e., the upper bound is at least d 1

ε
e. We further multiply the allowed number of

iterations by a multiple mult≥ 1, fixing the upper bound to be mult · d 1
ε
e.

We experimented with different values of ε between 0.01 and 0.5 and values of mult between 1
and 5. As expected, lower values of ε resulted in a more stable and higher performing heuristic.
Higher values of mult improved the heuristic only up to around mult= 2, after which point the
non-cycling termination condition was triggered almost always. On the other hand, reducing ε
had a significant impact on the run-time of the linearization algorithm. We chose the combination
of ε and mult that gave us the best trade-off between the quality of the solution and the total
run-time. In particular, for all the runs presented we take ε= 0.05 and mult= 2, resulting in an
upper bound of 40 runs for the inner loop.

Algorithm 3 ROLD

Require: initial state X0, initial nominal control û
(0)
0:T−1

1: for k= 0, . . . , T − 1 do
2: i := 0 and u

(k,0)
k:T−1 := û

(k)
k:T−1

3: while i≤mult · d 1
ε
e and u

(k,i)
k:T−1 6=u

(k,j)
k:T−1, ∀0≤ j < i do

4: u
(k,i+1)
k:T−1 =Linearization-Optimization(k,Xk,u

(k,i)
k:T−1)

5: i= i+ 1
6: end while
7: Set u

?,(k)
k:T−1 = arg min

uk:T−1∈
{
u

(k,0)
k:T−1

,...,u
(k,i−1)
k:T−1

} J([u?0:k−1,uk:T−1])

8: Set the nominal control sequence to û
(k+1)
k+1:T−1 =u

?,(k)
k+1:T−1

9: Set u?k =u
?,(k)
k and update the system state one step:

Xk+1 =Xk +Fk (Xk,u
?
k) (EC.54)

10: end for

EC.4.4. Initialization for ROLD

ROLD relies on a seeding for the nominal control initialization û
(0)
0:T−1. In this section, we describe

how we do this seeding. In order to prevent ROLD from getting stuck at a bad local minimum, we
seed it with several initializations and choose the best performing one at the end. We organize the
seeding in two passes.

First pass. For all targeting strategies, we run ROLD by seeding it with the fully open and fully
closed policies, as well as 20 random starting points. We sample these random seeds in different
ways, depending on the targeting strategy.
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• ROLD NO-TARGET: We sample i.i.d. uniformly at random an integer τ from the time steps
at which confinement decisions are made. We set the activity level to 0 for t≤ τ , and to 1 for
t > τ .

• ROLD AGE: We use the same sampling procedure as for NO-TARGET but separately for
each age group. In addition, we also initialize at the best ROLD NO-TARGET solution of the
first pass.

• ROLD ACT: We use the same sampling procedure as for NO-TARGET but separately for
each activity other than home. In addition, we also initialize at the best ROLD NO-TARGET
solution of the first pass.

• ROLD AGE-ACT: We use the same sampling procedure as for NO-TARGET but separately
for each (age group, activity) pair such that the activity is relevant for that group, and with
activity other than home. In addition, we also initialize at the best ROLD AGE and ROLD
ACT solutions of the first pass.

In each case, we select the solution that attains the best objective.

Second pass. Here we initialize ROLD at additional solutions: the solutions of ROLD runs on
parameter values that are adjacent to the focal ones in the experimental setup. For example, if in
an experiment the tested values of R0 are {0.01,0.5,1,1.5,2,2.5, . . . ,9.5,10}, then to run ROLD
with R0 = 3 we initialize it also at the ROLD solutions for R0 = 2.5 and R0 = 3.5.

• ROLD NO-TARGET. Initialize at two or four additional solutions: the best ROLD NO-
TARGET solution from the first pass for parameters adjacent to the focal ones.15

• ROLD AGE: Initialize at three or five additional solutions: the best ROLD NO-TARGET
solution from the second pass, and the best ROLD AGE solution from the first pass for
parameters adjacent to the focal ones.

• ROLD ACT: Initialize at three or five additional solutions: the best ROLD NO-TARGET
solution from the second pass, and the best ROLD ACT solution from the first pass for
parameters adjacent to the focal ones.

• ROLD AGE-ACT: Initialize at four or six additional solutions: the best ROLD AGE and
ROLD ACT solutions from the second pass, and the best ROLD AGE-ACT solution from the
first pass for parameters adjacent to the focal ones.

In each case, we select the solution that attains the best objective.

For the robust runs of Section 7, the initialization happens for each of the three scenarios, with
the same random starting points used across the three scenarios.

EC.5. Robust ROLD
Here, we describe the algorithmic details for the robust version of ROLD which use use to solve
the robust formulation from Section 7. To extend these ideas to the robust model in (16), we first
note that the key requirement in solving (16) is to determine the static decisions ut to follow
in periods t = 0, . . . , T new − 1, before the period T new when the parameter values θ are revealed.
Once we reach period T new and we know that scenario ω ∈ Ω materializes, we can determine the
decisions uωt to follow in subsequent periods t ∈ {T new, . . . , T − 1} by applying the “plain-vanilla”
ROLD procedure exactly as described above for the case with known parameters, implementing
the first-step decision and re-solving with a shrinking horizon, which improves performance. Our
robust implementation will mirror this logic.

15 In the runs for Figure 2, we have two additional solutions, each corresponding to the solution of ROLD when run
with a value of χ that is adjacent to the focal value of χ among the set of tested χ values. In the runs for the heatmaps
in Section 6.3 with χ and R0, we have four additional solutions: two solutions correspond to the solution of ROLD
when run with the same χ, and with the two values of R0 that are adjacent to the focal R0 among the set of tested
R0 values; another two solutions correspond to the solution of ROLD when run with the same R0, and with the two
values of χ that are adjacent to the focal χ among the set of tested χ values. Similarly for the experiments for the
heatmaps with χ and pDg .



ec18 e-companion to S. Camelo, D. Ciocan, D. Iancu, X. Warnes, S. Zoumpoulis: Targeting for Pandemic Response

To that end, we first describe how to solve the robust problem at time t= 0 to find the decisions
ut to follow in periods t= 0, . . . , T new − 1.16 The main ideas are the same as in a “plain-vanilla”
ROLD: we iteratively solve a linearized version of the problem within a trust region, changing the
linearization at each step to deal with the nonlinear dynamics. The main building block requires
solving a linearized version of the problem, which we obtain by linearizing the states under each
scenario ω ∈Ω. Formally, given a nominal control sequence ûω0:T−1 and its associated nominal system

trajectory X̂ω
0:T for each scenario ω ∈ Ω, we linearize the states Xω

0:T with evolution described
by (15) around the nominal trajectories. Paralleling the notation from Appendix EC.4.1, we use
Aω
t ,B

ω
t ,c

ω
t to denote the system matrices and eωt ,d

ω
t to denote the objective coefficients for period

t. Then, the main building block at t= 0 requires solving the following linear program:

min
{uω

0:T−1
}ω∈Ω,U

U

s.t. U ≥
∑
ω∈Ω

pω ·

[
T∑
t=0

(
(dωt )ᵀXω

t + (eωt )ᵀuωt

)]
∀p∈ {P1,P2, . . . ,Pn}

Xω
t =

( ∏
τ=t−1,t−2,...,0

Aω
τ

)
Xω

0 +
t−1∑
τ=0

( ∏
i=t−1,t−2,...,τ+1

Aω
i

)
Bω
τ u

ω
τ

+
t−1∑
τ=0

( ∏
i=t−1,t−2,...,τ+1

Aω
i

)
cωτ ∀t∈ {0, . . . , T − 1}, ∀ω ∈Ω

uωt ∈ [0,1]|G||U| ∀t∈ {0,1, . . . , T − 1}, ∀ω ∈Ω

uωt =uω
′

t ∀t∈ {0,1, . . . , T new− 1}, ∀ω,ω′ ∈Ω.

(EC.55)

Note that this is an epigraph reformulation of the robust model (16) for an SEIR system that follows
the approximate linearized dynamics in each scenario ω ∈Ω. Notably, although our robust model
in (16) allowed the adversary to choose any distribution p ∈ P, the formulation above restricts
attention to choices p ∈ P1, . . . ,Pm; this is without loss of optimality, because the adversary’s
objective function is linear in p (the expectation operator is linear in the probabilities) and the
extreme believes are the extreme points of P. The optimal value of U will therefore be the smallest
worst-case expected loss obtained based on linearizing the dynamics around ûω0:T−1 and X̂ω

0:T .
The main building block at time t= 0 will solve the program above, constraining the decisions

using the same trust-region logic as the “plain-vanilla” ROLD. We summarize this building block
in Algorithm 4.

Algorithm 4 Robust Linearization-Optimization At t= 0

Require: initial state X0, nominal control initialization ûω0:T−1 for every scenario ω ∈Ω

1: Calculate nominal trajectory X̂ω
0:T from X0 and ûω0:T−1 for every scenario ω ∈Ω

2: For every ω ∈ Ω, run CalculateObjectiveCoefficients to compute the objective coeffi-
cients for decisions uωt for t∈ {0, . . . , T − 1} when the parameters take value θ= θω.

3: Solve the linear program (EC.55) with additional trust region constraints uω0:T−1 ∈B∞ε (ûω0:T−1)
for every scenario ω ∈Ω, to obtain controls {ζω0:T−1}ω∈Ω

4: return {ζω0:T−1}ω∈Ω

Given this building block, we summarize the main Robust ROLD procedure in Algorithm 5.

16 We do not allow any re-solving of the ROLD heuristic for periods t= 1,2, . . . , T new−1 because no new information
is revealed during those periods. Moreover, to formulate a robust model with re-solving over a shrinking horizon while
maintaining dynamic consistency in the formulations and decisions is nontrivial.
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Algorithm 5 Robust ROLD

Require: initial state X0, initial nominal controls û
ω,(0)
0:T−1 for every scenario ω ∈Ω

#Calculate decisions ut for periods t∈ {0, . . . , T new− 1}
1: i := 0 and u

ω,(0,0)
0:T−1 := û

ω,(0)
0:T−1∀ω ∈Ω

2: while i≤mult · d 1
ε
e and u

ω,(0,i)
0:T−1 6=u

ω,(0,j)
0:T−1 , ∀0≤ j < i, ∀ω ∈Ω do

3: {uω,(0,i+1)
0:T−1 }ω∈Ω =Robust Linearization-Optimization At t= 0

(
X0,{uω,(0,i)0:T−1}ω∈Ω

)
4: i= i+ 1
5: end while
6: Set {u?,ω,(0)

0:T−1 }ω∈Ω = arg min
{uω

0:T−1
}ω∈Ω∈

{
{uω,(0,0)

0:T−1
}ω∈Ω,...,{u

ω,(0,i−1)
0:T−1

}ω∈Ω

}maxp∈P
∑

ω∈Ω pω ·J(uω0:T−1,θ
ω)

#Calculate decisions uωt for periods t∈ {T new, . . . , T − 1} separately, for each scenario ω ∈Ω
7: for ω ∈Ω do
8: Set u?,ω0:Tnew−1 =u

?,ω,(0)
0:Tnew−1

# Calculate the state at time T new

9: for t= 0, . . . , T new− 1 do

Xω
t+1 =Xω

t +Ft (X
ω
t ,u

?,ω
t ,θω) (EC.56)

10: end for

# Initialize the nominal control sequence for times T new, . . . , T − 1
11: Set û

ω,(Tnew)
Tnew:T−1 =u

?,ω,(0)
Tnew:T−1

12: for k= T new, . . . , T − 1 do
13: i := 0 and u

ω,(k,0)
k:T−1 := û

ω,(k)
k:T−1

14: while i≤mult · d 1
ε
e and u

ω,(k,i)
k:T−1 6=u

ω,(k,j)
k:T−1 , ∀0≤ j < i do

15: u
ω,(k,i+1)
k:T−1 =Linearization-Optimization(k,Xω

k ,u
ω,(k,i)
k:T−1 )

16: i= i+ 1
17: end while
18: Set u

?,ω,(k)
k:T−1 = arg min

uω
k:T−1

∈
{
u
ω,(k,0)
k:T−1

,...,u
ω,(k,i−1)
k:T−1

} J([u?,ω0:k−1,u
ω
k:T−1],θω)

19: Set the nominal control sequence to û
ω,(k+1)
k+1:T−1 =u

?,ω,(k)
k+1:T−1

20: Set u?,ωk =u
?,ω,(k)
k and update the system state one step:

Xω
k+1 =Xω

k +Fk (Xω
k ,u

?,ω
k ,θω) (EC.57)

21: end for
22: end for

EC.6. Details on Parametrization of the Model for Île-de-France
EC.6.1. Basic SEIR Model Parameters

The SEIR model parameters that are constant across age groups are summarized in Table EC.2.
The age-group specific parameters are reported in Table EC.3. We use the parameters as reported
in Salje et al. (2020).17

17 We retrieve the parameter values as reported before Salje et al. (2020) updated them on July 8, 2020.
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Table EC.2 SEIR model parameters

Variable Description
Value

Reference
[Uncertainty Range]

R0 Basic reproduction number
2.9

Salje et al. (2020)
[2.8 - 2.99]

σ−1 Latency period
4.0 days

Salje et al. (2020), Bi et al. (2020)
[3.52 - 4.48]

µ−1 Infectious period
4.0 days

Salje et al. (2020), Du et al. (2020)
[3.57 - 4.43]

For R0, the reported uncertainty range is a 95% confidence interval. For σ−1 (i.e., the mean stay
in compartment E), the uncertainty range is calculated as 4± 0.8 · 0.6 days, where 0.6 days is half
the width of the 95% confidence interval for the incubation period reported in Bi et al. (2020),
and 0.8 accounts for the fact that the stay in compartment E is 4/5 of the mean incubation time
in Salje et al. (2020). For µ−1 (i.e., the mean stay in an infectious state), the uncertainty range
is calculated as 4± 0.43, where 0.43 is half the width of the 95% confidence interval for the serial
interval reported by Du et al. (2020).18

Table EC.3 Age-group specific SEIR model probability parameters

Age group g pDg
(y.o.) Prob. of Death

given infection

0-19
0.000012

[0.000003 - 0.000021]

20-64
0.001466

[0.000808 - 0.002123]

65+
0.041862

[0.024186 - 0.059538]

Calculating the transmission rate β from R0. We obtain β by linearizing the dynamics for
Eg, Ig around a point where Sh ≈Nh, Ih ≈ 0, ∀h. More precisely, we have:

∂Eg
∂t
≈ β

∑
h

cghIh(t)−σEg(t)

∂Ig
∂t
≈ σEg(t).

Then, with Y (t) :=
[
E1(t),E2(t), . . . ,E|G|, I1(t), . . . , I|G|

]T
, we can write Ẏ (t) = (Φ+Λ)Y (t), where

Φ = β ·
[

0 [cgh]g,h∈G
0 0

]
(EC.58)

18 We note that Du et al. (2020) estimate the serial interval, and not the infectious period, to be 3.96 days. We
borrow their confidence interval for the serial interval estimation and use it as an uncertainty range for our infectious
period, which is of about the same length as their estimated serial interval.
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and

Λ =

[
−diag(σ) 0
diag(σ) −diag(µ)

]
. (EC.59)

Then R0 can be identified as the spectral radius (i.e., the largest absolute value of the eigenvalues)
of the matrix −ΦΛ−1 (Diekmann et al. 2010, Perasso 2018). Since the eigenvalues of a matrix β ·A
are simply β multiples of the eigenvalues of A, we can therefore determine β as R0 divided by the
spectral radius of the matrix (−Φ/β)Λ−1.

EC.6.2. Economic Model Parameter Fitting

We obtain data on population, employment, and wages from the French National Institute of
Statistics and Economic Studies (Institut national de la statistique et des études économiques—
INSEE). Where relevant, we discount all cash flows at a 3% annualized rate. We set the retirement
age to be 65 (i.e., 64 is the last working year of age.) We first obtain the initial population data
Ng(0) for each age group in Île-de-France at the end of 2019 from INSEE (2020).

Estimation of wg. Recall that wg in (EC.15) corresponds to the employment value for a member
of group g, under normal conditions. To estimate wg, we use two datasets from INSEE:

• Yearly full time equivalent (FTE)19 wages and employed population count for Île-de-France
in 2016, broken up into the age groups “under 26 years old”, “26 to 49 years old” and “more
than 50 years old” (INSEE 2016b).

• FTE employment rates across the entire economy for the fourth quarter of 2019, bucketed by
age groups “15 to 24 years old”, “25 to 49 years old”, “50 to 64 years old”, and “55 to 64
years old” (INSEE 2019).

Since we do not have a consolidated data source for economic data split by our exact age group
definitions, we use the above datasets to interpolate values for wg. At a high level, we derive wage
curves across age ranges.

We next explain the general procedure, as well as the additional assumptions we have made for
the interpolation. First, for the construction of wage curve by age bucket:

• We assume that the national level employment rates from INSEE (2019) are equal to those
of the Île-de-France region. Because the age bucketing for our age groups is different from the
age bucketing in the data, we use interpolation. Specifically, we fit a piece-wise linear model
(consisting of three pieces) to the four employment rates reported for the “15 to 24 years
old”, “25 to 49 years old”, “50 to 64 years old”, and “55 to 64 years old” groups. We take the
midpoint of the age group as the x value of the datapoint; for example, for “50 to 64 years
old” we use a midpoint of 57.5.

With this model, we can infer an employment rate for any arbitrary age and construct an
employment rate curve.

• We perform a similar fitting procedure for the age group wage information from INSEE
(2016b). Since the wage progression by age is much smoother, we use simple linear regression
to construct a wage curve for each one of our age buckets.

• The previous wage curve only accounts for the employed population, whereas our age groups
count the entire population. We thus combine the wage curve with employment rate and
population data to arrive at a wage number blended across an entire age group’s population.

When doing this, we treat the 0-19 y.o. age group specially by assuming the employment
rate is reported only with respect to the work-eligible population in that bucket (15-19 year
olds). We also set the work-eligible population for the 65+ age bucket to 0. The formula we
use is

average wageg = employment rateg×fraction work eligible populationg×employed average wageg.
(EC.60)

19 This is a normalization to account for employees doing part time work.
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• The interpolations we use introduce errors: in particular, if we aggregate the wages inferred
by our constructed curve across the entire population, we overestimate the real total wages by
10.88%. We scale all wages average wageg proportionally so as to retrieve the real total wage
amount wg.

Table EC.4 summarizes the year-based employment contribution parameters per age group.
We note that when using them in the objective of the optimization problem, we divide these
year-based values by 365, in order to capture employment value on a daily basis.

Table EC.4 Year-based economic value parameters under normal activity, per age group (in e)

Age Group g (y.o.) wg × 365 (e)

0-19 972.90

20-64 25236.13

65+ 0.00

Estimation of νwork, νother activities, νfixed. We move on to the estimation of parameters
νwork, νother activities, νfixed in (EC.15). These measure the sensitivity of economic value to the confine-
ment pattern `(t). We estimate them from data on lost economic output during the first lockdown
phase employed in Île-de-France, and in particular using the month of April 2020. We break up
the approach into a few steps:

• We use survey data of French managers regarding business activity during the lockdown start-
ing March 17 2020 from the Bank of France. This is sentiment data where managers are asked
to compare current business conditions to normal conditions for the same relevant time period
(Banque de France 2020a,b). These data are reported by industry, and we aggregate them
into a single number weighting by industry size. We use FTE wages and employed population
count for the Île-de-France region in 2016 (INSEE 2016a) to figure out the appropriate weights
to use in the aggregation. We then use these monthly readings as proxies for the economic
activity level due to confinements in the month of April 2020, as compared to normal activity.
The economic activity level for the month of April is 58.51%.

• A requirement for our estimation are the precise levels of confinement in April 2020. We
retrieve these from Google mobility data (Google 2020). To simplify the estimation, we first
set νother activities = 0 and determine parameters νwork, νfixed solving the system of equations

νwork + νfixed = 1 (EC.61)

νwork`workApril + νfixed = 0.5851, (EC.62)

where `workApril = 0.213 corresponds to the average value of `work(t) through the month of April
2020. Then in our experiments, we take νwork to be 95% of the solution from the above system;
keep the value for νfixed from the system; and set νother activities = 1− νwork− νfixed.

EC.6.3. Parameter Values for the Experimental and Optimization setup

Table EC.5 summarizes values for the parameters in our experimental and optimization setup.

EC.7. Robustness Checks and Additional Results
EC.7.1. The Gains from Targeting for Other Pandemics and Geographies

Here we provide some additional robustness to the Pareto dominance of AGE-ACT which we
observe in Section 6. We do this by testing ROLD with other pandemics and geographies with
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Table EC.5 Parameter values for experimental and optimization setup. The parameters
νwork, νother activities, νfixed, r, fg and θ related to our economic model are defined in Appendix EC.2.

Parameter Description Notation Values in Experiments

Social mixing parameter α 0.3874

Cost of death χ 30 values in [0,1000]× GDP per capita of France

GDP per capita of France e37199.03

Sensitivity of econ. value on confinement νwork 0.5009

Sensitivity of econ. value on confinement νother activities 0.0264

Sensitivity of econ. value on confinement νfixed 0.4727

Discount rate (used to calculate vg(`) and vlifeg ) r 0.03

Fraction going to school f0-19 y.o. 0.9543

Mult. factor for value of schooling θ 0.5

Date of patient zero December 20 2019

Starting time for optimization March 17 2020

Optimization horizon T ′ 90 days

Frequency of confinement decisions 14 days

different social contact and population structures than we consider in our COVID-19 in Île-de-
France focal case-study.
Other pandemics. We fit our SEIR model to two other known pandemics beyond COVID-19. The
first is Ebola, which has a smaller reproduction number (1.95) than COVID-19 but significantly
higher death probability (81% for the 65+ age group). The second is a strain of Seasonal Influenza
which has a smaller reproduction number (1.28) than COVID-19 and smaller death probability
(under 1%). The parameters we use for Ebola and Seasonal Influenza are found in Table EC.6. We
use these parameters using the studies of Muzembo et al. (2024), Garske et al. (2017), Chowell
et al. (2004) in the case of Ebola, and Biggerstaff et al. (2014), World Health Organization (2025),
McDonald et al. (2023) for Seasonal Influenza.

Table EC.6 Epidemiological parameters for Ebola and Influenza by age group

Age Group g (y.o.)
Ebola Influenza

R0 µ σ pdeath precovery R0 µ σ pdeath precovery

0–19 1.95 0.17825 0.15873 0.56472 0.43528 1.28 0.14286 0.50 0.00010 0.99990

20–64 1.95 0.17825 0.15873 0.63848 0.36152 1.28 0.14286 0.50 0.00159 0.99841

65+ 1.95 0.17825 0.15873 0.81494 0.18506 1.28 0.14286 0.50 0.00540 0.99460

Other geographies. We also consider two other geographies, Hong Kong and South Africa.
We calibrate these geographies to be different from Île-de-France across two important problem
parameters:

• Social contacts. We use the social contact matrices calibrated for these geographies, which
we retrieve from the data tool of Wille et al. (2020), but rescale them in the following way.
The contacts of South Africa, are much lower than France’s; this makes the robustness check
uninteresting since the optimal policies are full open at all χ levels. We thus rescale all three
contact matrices so that the overall number of contacts is the same and set to that of France.
However, the heterogeneity across acitvities and population groups remains specific to the
geography.

• Population buckets and wage information. Each geography is calibrated to a different
size and bucketing of population, as well as different economic contributions from wages,
which we calibrate from Census and Statistics Department, The Government of the Hong
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Kong Special Administrative Region (2025a,c,b) for Hong Kong and Department: Statistics,
Republic of South Africa (2019, 2024, 2025) for South Africa and we report in Table EC.7.

All other economic model characteristics are replicated from our baseline model for Île-de-France.

Table EC.7 Population and wage data for Hong Kong and South Africa geographies

Age Group g (y.o.)
Hong Kong South Africa

Population wg × 365 Population wg × 365

0–19 1,039,200 253.20 21,559,289 950.40

20–64 4,766,000 15,057.28 33,694,956 3170.22

65+ 1,718,900 2,133.89 3,520,776 0.00

In order to see whether the Pareto dominance of AGE-ACT replicates across all
these settings, we run a factorial 3 × 3 experiment where we construct a problem
instance using each pandemic and geography pair in {COVID-19, Ebola, Seasonal Influenza} ×
{Hong Kong, Île-de-France, South Africa}. We report the results in Figure EC.1. We observe that
across all instances, all targeting variants not only generate gains over NO-TARGET, but Pareto
dominate it. As we observed in Section 6, it is not readily clear that AGE or ACT Pareto dominate
each other, but they are dominated by AGE-ACT.

EC.7.2. Sensitivity Analyses

We analyze additional problem instances by changing the value of each of six estimated parameters
within a sensitivity range, as shown in Table EC.8. We sample 1000 samples i.i.d. from the joint
uniform distribution specified by the sensitivity ranges indicated in the table.

Table EC.8 Sensitivity analysis: parameters and sensitivity ranges

Parameter Estimated Value Sensitivity Range

R0 2.9 2.7-3.1

σ−1 4.0 3.0-5.0

µ−1 4.0 3.0-5.0

Multiplier of pDg 1 0.5-1.5

Social mixing α 0.3874 0.1874-0.5874

Sensitivity of econ. value νwork 0.5009 0.4009 - 0.6009

Figure EC.2 shows sensitivity analysis results for seven values of the economic cost of death χ:
[0,10,15,25,50,100,150]× the annual GDP per capita in France. The shown boxplots summarize
results over the 1000 problem instances, for each value of χ. These results reinforce our findings
from Section 6 on the gains of targeting.

EC.7.3. Additional Plots on Sensitivity of Gains from Targeting on Key Parameters

Figure EC.3 breaks down deaths and economic loss of optimized ROLD policies, showing the
dependence on R0 and χ.



e-companion to S. Camelo, D. Ciocan, D. Iancu, X. Warnes, S. Zoumpoulis: Targeting for Pandemic Response ec25

10000 20000 30000 40000 50000
0

5

10

15

20

25

30

Fr
an

ce
Ec

on
om

ic 
Lo

ss
es

 (B
illi

on
 

)

COVID-19

20000 40000 60000 80000
20

22

24

26

28

30

32

34
Ebola

0 5000 10000 15000
0

5

10

15

20

25

Seasonal Influenza
ROLD AGE-ACT
ROLD AGE
ROLD ACT
ROLD NO-TARGET

50000 100000 150000
0

5

10

15

20

So
ut

h 
Af

ri
ca

Ec
on

om
ic 

Lo
ss

es
 (B

illi
on

 
)

0 50000 100000 150000
0

5

10

15

20

50 100 150
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 20000 40000 60000
Total Number of Deaths

0

2

4

6

8

10

12

H
on

g 
Ko

ng
Ec

on
om

ic 
Lo

ss
es

 (B
illi

on
 

)

5000 10000 15000 20000 25000
Total Number of Deaths

2

4

6

8

10

12

0 2000 4000 6000 8000 10000
Total Number of Deaths

0

1

2

3

4

5

6

7

Figure EC.1 The total number of deaths and the economic losses generated by targeted ROLD policies in
each problem instance of the 3 × 3 experiment for the gains of targeting for other pandemic
and geographies. We construct a problem instance using each pandemic and geography pair in
{COVID-19, Ebola, Seasonal Influenza}×{Hong Kong, Île-de-France, South Africa}.
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Figure EC.3 Heatmaps of the Total Deaths and Economic Loss under optimal ROLD policies as a function of the
basic reproduction number R0 and the cost of death χ. (The figure is best viewed in color.)
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